
Hemlock User’s Manual

Bill Chiles
Rob Machlachlan

February 1992
CMU-CS-89-133-R1

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This is a revised version of Technical Report CMU-CS-87-158.

Abstract

This document describes the Hemlock text editor, version M3.2. Hemlock is a customizable,
extensible text editor whose initial command set closely resembles that of ITS/TOPS-20
Emacs. Hemlock is written in CMU Common Lisp and has been ported to other implemen-
tations.

This research was supported by the Defense Advanced Research Projects Agency (DOD),
and monitored by the Avionics Laborotory, Air Force Wright Aeronatutical Laboratories,
Aeronautical Systems Division (AFSC), Wright-Patterson AFB, Ohio 45344-6543 under
Contract F33615-87-C-1499, ARPA Order No. 4976, Amendment 20.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as respresnting the official policies, either rexpressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. government.

i

Table of Contents

1 Introduction . 1
1.1 The Point and The Cursor . 1
1.2 Notation . 1

1.2.1 Key-events . 1
1.2.2 Commands . 2
1.2.3 Hemlock Variables . 2

1.3 Invoking Commands . 2
1.3.1 Key Bindings . 3
1.3.2 Extended Commands . 3

1.4 The Prefix Argument . 4
1.5 Modes . 4
1.6 Display Conventions . 5

1.6.1 Pop-Up Windows . 5
1.6.2 Buffer Display . 6
1.6.3 Recentering Windows . 6
1.6.4 Modelines . 7

1.7 Use with X Windows . 7
1.7.1 Window Groups . 8
1.7.2 Event Translation . 8
1.7.3 Cut Buffer Commands . 8
1.7.4 Redisplay and Screen Management . 9

1.8 Use With Terminals . 10
1.8.1 Terminal Initialization . 10
1.8.2 Terminal Input . 10
1.8.3 Terminal Redisplay . 11

1.9 The Echo Area . 11
1.10 Online Help . 13
1.11 Entering and Exiting . 14
1.12 Helpful Information . 15
1.13 Recursive Edits . 16
1.14 User Errors . 16
1.15 Internal Errors . 16

2 Basic Commands . 18
2.1 Motion Commands . 18
2.2 The Mark and The Region . 19

2.2.1 The Mark Stack . 20
2.2.2 Using The Mouse . 21

2.3 Modification Commands . 22
2.3.1 Inserting Characters . 22
2.3.2 Deleting Characters . 22
2.3.3 Killing and Deleting . 23
2.3.4 Kill Ring Manipulation . 23

ii

2.3.5 Killing Commands . 24
2.3.6 Case Modification Commands . 24
2.3.7 Transposition Commands . 24
2.3.8 Whitespace Manipulation . 25

2.4 Filtering . 26
2.5 Searching and Replacing . 26
2.6 Page Commands . 29
2.7 Counting Commands . 30
2.8 Registers . 30

3 Files, Buffers, and Windows 32
3.1 Introduction . 32
3.2 Buffers . 32
3.3 Files . 34

3.3.1 Auto Save Mode . 36
3.3.2 Filename Defaulting and Merging . 37
3.3.3 Type Hooks and File Options . 37

3.4 Windows . 38

4 Editing Documents . 40
4.1 Sentence Commands . 40
4.2 Paragraph Commands . 40
4.3 Filling . 41
4.4 Scribe Mode . 42
4.5 Spelling Correction . 43

4.5.1 Auto Spell Mode . 45

5 Managing Large Systems . 47
5.1 File Groups . 47
5.2 Source Comparison . 48
5.3 Change Logs . 49

6 Special Modes . 51
6.1 Dired Mode . 51

6.1.1 Inspecting Directories . 51
6.1.2 Deleting Files . 52
6.1.3 Undeleting Files . 52
6.1.4 Expunging and Quitting . 52
6.1.5 Copying Files . 53
6.1.6 Renaming Files . 53

6.2 View Mode . 53
6.3 Process Mode . 54
6.4 Bufed Mode . 56
6.5 Completion . 56
6.6 CAPS-LOCK Mode . 58
6.7 Overwrite Mode . 58

iii

6.8 Word Abbreviation . 58
6.8.1 Basic Commands . 59
6.8.2 Word Abbrev Files . 60
6.8.3 Listing Word Abbrevs . 60
6.8.4 Editing Word Abbrevs . 61
6.8.5 Deleting Word Abbrevs . 61

6.9 Lisp Library . 62

7 Editing Programs . 63
7.1 Comment Manipulation . 63
7.2 Indentation . 64
7.3 Language Modes . 65

8 Editing Lisp . 66
8.1 Lisp Mode . 66
8.2 Form Manipulation . 66
8.3 List Manipulation . 67
8.4 Defun Manipulation . 67
8.5 Indentation . 68
8.6 Parenthesis Matching . 69
8.7 Parsing Lisp . 70

9 Interacting With Lisp . 71
9.1 Eval Servers . 71

9.1.1 The Current Eval Server . 71
9.1.2 Slaves . 71
9.1.3 Slave Creation and Destruction . 72
9.1.4 Eval Server Operations . 73

9.2 Typescripts . 73
9.3 The Current Package . 76
9.4 Compiling and Evaluating Lisp Code . 76
9.5 Compiling Files . 77
9.6 Querying the Environment . 78
9.7 Editing Definitions . 79
9.8 Debugging . 79

9.8.1 Changing Frames . 79
9.8.2 Getting out of the Debugger . 80
9.8.3 Getting Information . 80
9.8.4 Editing Sources . 81
9.8.5 Miscellaneous . 81

9.9 Manipulating the Editor Process . 81
9.9.1 Editor Mode . 81
9.9.2 Eval Mode . 82
9.9.3 Error Handling . 82

9.10 Command Line Switches . 83

iv

10 The Mail Interface . 84
10.1 Introduction to Mail in Hemlock . 84
10.2 Constraints on MH to use Hemlock’s Interface 85
10.3 Setting up MH . 85
10.4 Profile Components and Customized Files . 86

10.4.1 Profile Components . 86
10.4.2 Components Files . 87

10.5 Backing up the Mail Directory . 88
10.5.1 Andrew File System . 88

10.5.1.1 Copy into AFS: . 88
10.5.1.2 Mail Directory Lives in AFS: . 89

10.5.2 Sup to a Mainframe . 89
10.6 Introduction to Commands and Variables . 90
10.7 Scanning and Picking Messages . 90
10.8 Reading New Mail . 92
10.9 Reading Messages . 93
10.10 Sending Messages . 95
10.11 Convenience Commands for Message and Draft Buffers 97
10.12 Deleting Messages . 98
10.13 Folder Operations . 99
10.14 Refiling Messages . 100
10.15 Marking Messages . 100
10.16 Terminating Headers Buffers . 100
10.17 Miscellaneous Commands . 102
10.18 Styles of Usage . 102

10.18.1 Unseen Headers Message Spec . 102
10.18.2 Temporary Draft Folder . 102
10.18.3 Reply to Message Prefix Action . 103

10.19 Wallchart . 104

11 The Hemlock Netnews Interface 106
11.1 Introduction to Netnews in Hemlock . 106
11.2 Setting Up Netnews . 106

11.2.1 News-Browse Mode . 107
11.3 Starting Netnews . 107
11.4 Reading Messages . 109
11.5 Replying to Messages . 111
11.6 Posting Messages . 112
11.7 Wallchart . 114

12 System Interface . 116
12.1 File Utility Commands . 116
12.2 Printing . 117
12.3 Scribe . 117
12.4 Miscellaneous . 117

v

13 Simple Customization . 119
13.1 Keyboard Macros . 119
13.2 Binding Keys . 120
13.3 Hemlock Variables . 120
13.4 Init Files . 121

Function Index . 122

Variable Index . 128

Concept Index . 130

1

1 Introduction

Hemlock is a text editor which follows in the tradition of Emacs and the Lisp Machine
editor ZWEI. In its basic form, Hemlock has almost the same command set as ITS/TOPS-
20 Emacs1, and similar features such as multiple windows and extended commands, as well
as built in documentation features. The reader should bear in mind that whenever some
powerful feature of Hemlock is described, it has probably been directly inspired by Emacs.

This manual describes Hemlock’s commands and other user visible features and then goes
on to tell how to make simple customizations. For complete documentation of the Hemlock
primitives with which commands are written, the Hemlock Command Implementor’s Manual
is also available.

1.1 The Point and The Cursor

The point is the current focus of editing activity. Text typed in by the user is inserted at
the point. Nearly all commands use the point as a indication of what text to examine or
modify. Textual positions in Hemlockare between characters. This may seem a bit curious
at first, but it is necessary since text must be inserted between characters. Although the
point points between characters, it is sometimes said to point at a character, in which case
the character after the point is referred to.

The cursor is the visible indication of the current focus of attention: a rectangular blotch
under X windows, or the hardware cursor on a terminal. The cursor is usually displayed on
the character which is immediately after the point, but it may be displayed in other places.
Wherever the cursor is displayed it indicates the current focus of attention. When input is
being prompted for in the echo area, the cursor is displayed where the input is to go. Under
X windows the cursor is only displayed when Hemlock is waiting for input.

1.2 Notation

There are a number of notational conventions used in this manual which need some expla-
nation.

1.2.1 Key-events

The canonical representation of editor input is a key-event. When you type on the keyboard,
Hemlock receives key-events. Key-events have names for their basic form, and we refer to
this name as a keysym. This manual displays keysyms in a Bold font. For example, a and
b are the keys that normally cause the editor to insert the characters a and b.

Key-events have modifiers or bits indicating a special interpretation of the root key-
event. Although the keyboard places limitations on what key-events you can actually type,
Hemlock understands arbitrary combinations of the following modifiers: Control, Meta,
Super, Hyper, Shift, and Lock. This manual represents the bits in a key-event by prefixing
the keysym with combinations of C-, M-, S-, H-, Shift-, and Lock. For example, a with
both the control and meta bits set appears as C-M-a. In general, ignore the shift and lock
modifiers since this manual never talks about keysyms that explicitly have these bits set;

1 In this document, "Emacs" refers to this, the original version, rather than to any of the large numbers
of text editors inspired by it which may go by the same name.

Chapter 1: Introduction 2

that is, it may talk about the key-event A, but it would never mention Shift-a. These are
actually distinct key-events, but typical input coercion turns presents Hemlock with the
former, not the latter.

Key-event modifiers are totally independent of the keysym. This may be new to you if
you are used to thinking in terms of ASCII character codes. For example, with key-events
you can distinctly identify both uppercase and lowercase keysyms with the control bit set;
therefore, C-a and C-A may have different meanings to Hemlock.

Some keysyms’ names consist of more than a single character, and these usually corre-
spond to the legend on the keyboard. For example, some keyboards let you enter Home,
Return, F9, etc.

In addition to a keyboard, you may have a mouse or pointer device. Key-events also
represent this kind of input. For example, the down and up transitions of the left button
correspond to the Leftdown and Leftup keysyms.

See sections [key-bindings], page 3, [using-x], page 7, [using-terminals], page 10,

1.2.2 Commands

Nearly everything that can be done in Hemlock is done using a command. Since there are
many things worth doing, Hemlock provides many commands, currently nearly two hundred.
Most of this manual is a description of what commands exist, how they are invoked, and
what they do. This is the format of a command’s documentation:

[Command]Sample Command (bound to C-M-q, C-‘)
This command’s name is Sample Command, and it is bound to C-M-q and
C-‘, meaning that typing either of these will invoke it. After this header
comes a description of what the command does:

This command replaces all occurrences following the point of the string "Pascal"
with the string "Lisp". If a prefix argument is supplied, then it is interpreted as the
maximum number of occurrences to replace. If the prefix argument is negative then
the replacements are done backwards from the point.

1.2.3 Hemlock Variables

Hemlock variables supply a simple customization mechanism by permitting commands to
be parameterized. For details See [vars], page 120.

[Var]Sample Variable (initial value 36)
The name of this variable is Sample Variable and its initial value is 36.

This variable sets a lower limit on the number of replacements that be done by
Sample Command. If the prefix argument is supplied, and smaller in absolute value
than Sample Variable, then the user is prompted as to whether that small a number
of occurrences should be replaced, so as to avoid a possibly disastrous error.

1.3 Invoking Commands

In order to get a command to do its thing, it must be invoked. The user can do this
two ways, by typing the key to which the command is bound or by using an extended
command. Commonly used commands are invoked via their key bindings since they are

Chapter 1: Introduction 3

faster to type, while less used commands are invoked as extended commands since they are
easier to remember.

1.3.1 Key Bindings

A key is a sequence of key-events (see section [key-events], page 1) typed on the keyboard,
usually only one or two in length. Sections [using-x], page 7, and [using-terminals], page 10,
contain information on particular input devices.

When a command is bound to a key, typing the key causes Hemlock to invoke the
command. When the command completes its job, Hemlock returns to reading another key,
and this continually repeats.

Some commands read key-events interpreting them however each command desires.
When commands do this, key bindings have no effect, but you can usually abort Hem-
lock whenever it is waiting for input by typing C-g (see section [aborting], page 15). You
can usually find out what options are available by typing C- or Home (see section [help],
page 13).

The user can easily rebind keys to different commands, bind new keys to commands, or
establish bindings for commands never bound before (see section [binding-keys], page 120).

In addition to the key bindings explicitly listed with each command, there are some
implicit bindings created by using key translations2. These bindings are not displayed by
documentation commands such as Where Is. By default, there are only a few key transla-
tions. The modifier-prefix characters C-^, Escape, C-z, or C-c may be used when typing
keys to convert the following key-event to a control, meta, control-meta, or hyper key-event.
For example, C-x Escape b invokes the same commands as C-x M-b, and C-z u is the same
as C-M-u. This allows user to type more interesting keys on limited keyboards that lack
control, meta, and hyper keys.

[Hemlock Variable]Key Echo Delay (initial value 1.0)
A key binding may be composed of several key-events, especially when you enter it
using modifier-prefix key-events. Hemlock provides feedback for partially entered keys
by displaying the typed key-events in the echo area. In order to avoid excessive output
and clearing of the echo area, this display is delayed by Key Echo Delay seconds. If
this variable is set to nil, then Hemlock foregoes displaying initial subsequences of
keys.

1.3.2 Extended Commands

A command is invoked as an extended command by typing its name to the Extended Com-
mand command, which is invoked using its key binding, M-x.

[Command]Extended Command (bound to M-x)
This command prompts in the echo area for the name of a command, and then invokes
that command. The prefix argument is passed through to the command invoked. The
command name need not be typed out in full, as long as enough of its name is supplied
to uniquely identify it. Completion is available using Escape and Space, and a list of
possible completions is given by Home or C- .

2 Key translations are documented in the Hemlock Command Implementor’s Manual.

Chapter 1: Introduction 4

1.4 The Prefix Argument

The prefix argument is an integer argument which may be supplied to a command. It
is known as the prefix argument because it is specified by invoking some prefix argument
setting command immediately before the command to be given the argument. The following
statements about the interpretation of the prefix argument are true:

• When it is meaningful, most commands interpret the prefix argument as a repeat count,
causing the same effect as invoking the command that many times.

• When it is meaningful, most commands that use the prefix argument interpret a nega-
tive prefix argument as meaning the same thing as a positive argument, but the action
is done in the opposite direction.

• Most commands treat the absence of a prefix argument as meaning the same thing as
a prefix argument of one.

• Many commands ignore the prefix argument entirely.

• Some commands do none of the above.

The following commands are used to set the prefix argument:

[Command]Argument Digit (bound to all control or meta digits)
Typing a number using this command sets the prefix argument to that number, for
example, typing M-1 M-2 sets the prefix argument to twelve.

[Command]Negative Argument (bound to M–)
This command negates the prefix argument, or if there is none, sets it to negative
one. For example, typing M– M-7 sets the prefix argument to negative seven.

[Command]Universal Argument (bound to C-u)
[Hemlock Variable]Universal Argument Default (initial value 4)

This command sets the prefix argument or multiplies it by four. If digits are typed
immediately afterward, they are echoed in the echo area, and the prefix argument
is set to the specified number. If no digits are typed then the prefix argument is
multiplied by four. C-u - 7 sets the prefix argument to negative seven. C-u C-u sets
the prefix argument to sixteen. M-4 M-2 C-u sets the prefix argument to one hundred
and sixty-eight. C-u M-0 sets the prefix argument to forty.

Universal Argument Default determines the default value and multiplier for the Uni-
versal Argument command.

1.5 Modes

A mode provides a way to change Hemlock’s behavior by specifying a modification to current
key bindings, values of variables, and other things. Modes are typically used to adjust
Hemlock to suit a particular editing task, e.g. Lisp mode is used for editing Lisp code.

Modes in Hemlock are not like modes in most text editors; Hemlock is really a “modeless”
editor. There are two ways that the Hemlock mode concept differs from the conventional
one:

1. Modes do not usually alter the environment in a very big way, i.e. replace the set of
commands bound with another totally disjoint one. When a mode redefines what a key
does, it is usually redefined to have a slightly different meaning, rather than a totally

Chapter 1: Introduction 5

different one. For this reason, typing a given key does pretty much the same thing no
matter what modes are in effect. This property is the distinguishing characteristic of
a modeless editor.

2. Once the modes appropriate for editing a given file have been chosen, they are seldom,
if ever, changed. One of the advantages of modeless editors is that time is not wasted
changing modes.

A major mode is used to make some big change in the editing environment. Language
modes such as Pascalmode are major modes. A major mode is usually turned on by invoking
the command mode-name Mode as an extended command. There is only one major mode
present at a time. Turning on a major mode turns off the one that is currently in effect.

A minor mode is used to make a small change in the environment, such as automatically
breaking lines if they get too long. Unlike major modes, any number of minor modes may
be present at once. Ideally minor modes should do the “right thing” no matter what major
and minor modes are in effect, but this is may not be the case when key bindings conflict.

Modes can be envisioned as switches, the major mode corresponding to one big switch
which is thrown into the correct position for the type of editing being done, and each minor
mode corresponding to an on-off switch which controls whether a certain characteristic is
present.

[Command]Fundamental Mode
This command puts the current buffer into Fundamental mode. Fundamental mode is
the most basic major mode: it’s the next best thing to no mode at all.

1.6 Display Conventions

There are two ways that Hemlock displays information on the screen; one is normal buffer
display, in which the text being edited is shown on the screen, and the other is a pop-up
window.

1.6.1 Pop-Up Windows

Some commands print out information that is of little permanent value, and these commands
use a pop-up window to display the information. It is known as a pop-up window because
it temporarily appears on the screen overlaying text already displayed. Most commands of
this nature can generate their output quickly, but in case there is a lot of output, or the
user wants to repeatedly refer to the same output while editing, Hemlock saves the output
in a buffer. Different commands may use different buffers to save their output, and we refer
to these as random typeout buffers.

If the amount of output exceeds the size of the pop-up window, Hemlockdisplays the
message “–More–” after each window full. The following are valid responses to this prompt:

Space, y Display the next window full of text.

Delete, Backspace, n
Abort any further output.

Escape, ! Remove the window and continue saving any further output in the buffer.

k This is the same as ! or escape, but Hemlock makes a normal window over the
pop-up window. This only works on bitmap devices.

Chapter 1: Introduction 6

Any other input causes the system to abort using the key-event to determine the next
command to execute.

When the output is complete, Hemlock displays the string “–Flush–” in the pop-up
window’s modeline, indicating that the user may flush the temporary display. Typing any
of the key-events described above removes the pop-up window, but typing k still produces a
window suitable for normal editing. Any other input also flushes the display, but Hemlock
uses the key-event to determine the next command to invoke.

[Command]Select Random Typeout Buffer (bound to H-t)
This command makes the most recently used random typeout buffer the current buffer
in the current window.

Random typeout buffers are always in Fundamental mode.

1.6.2 Buffer Display

If a line of text is too long to fit within the screen width it is wrapped, with Hemlock
displaying consecutive pieces of the text line on as many screen lines as needed to hold the
text. Hemlock indicates a wrapped line by placing a line-wrap character in the last column
of each screen line. Currently, the line-wrap character is an exclamation point (!). It is
possible for a line to wrap off the bottom of the screen or on to the top.

Hemlock wraps screen lines when the line is completely full regardless of the line-wrap
character. Most editors insert the line-wrap character and wrap a single character when
a screen line would be full if the editor had avoided wrapping the line. In this situation,
Hemlock would leave the screen line full. This means there are always at least two characters
on the next screen line if Hemlock wraps a line of display. When the cursor is at the end of
a line which is the full width of the screen, it is displayed in the last column, since it cannot
be displayed off the edge.

Hemlock displays most characters as themselves, but it treats some specially:

• Tabs are treated as tabs, with eight character tab-stops.

• Characters corresponding to ASCII control characters are printed as ^char ; for exam-
ple, a formfeed is ^L.

• Characters with the most-significant bit on are displayed as <hex-code>; for example,
<E2>.

Since a character may be displayed using more than one printing character, there are
some positions on the screen which are in the middle of a character. When the cursor is on
a character with a multiple-character representation, Hemlock always displays the cursor on
the first character.

1.6.3 Recentering Windows

When redisplaying the current window, Hemlock makes sure the current point is visible.
This is the behavior you see when you are entering text near the bottom of the window,
and suddenly redisplay shifts your position to the window’s center.

Some buffers receive input from streams and other processes, and you might have win-
dows displaying these. However, if those windows are not the current window, the output
will run off the bottom of the windows, and you won’t be able to see the output as it appears

Chapter 1: Introduction 7

in the buffers. You can change to a window in which you want to track output and invoke
the following command to remedy this situation.

[Command]Track Buffer Point
This command makes the current window track the buffer’s point. This means that
each time Hemlock redisplays, it will make sure the buffer’s point is visible in the
window. This is useful for windows that are not current and that display buffer’s
that receive output from streams coming from other processes.

1.6.4 Modelines

A modeline is the line displayed at the bottom of each window where Hemlock shows infor-
mation about the buffer displayed in that window. Here is a typical modeline:

Hemlock USER: (Fundamental Fill) /usr/slisp/hemlock/user.mss

This tells us that the file associated with this buffer is “/usr/slisp/hemlock/user.mss”,
and the Current Package for Lisp interaction commands is the "USER" package. The modes
currently present are Fundamental and Fill; the major mode is always displayed first, followed
by any minor modes. If the buffer has no associated file, then the buffer name will be present
instead:

Hemlock PLAY: (Lisp) Silly:

In this case, the buffer is named Silly and is in Lisp mode. The user has set Current
Package for this buffer to "PLAY".

[Hemlock Variable]Maximum Modeline Pathname Length (initial value nil)
This variable controls how much of a pathname Hemlock displays in a modeline.
Some distributed file systems can have very long pathnames which leads to the more
particular information in a pathname running off the end of a modeline. When set,
the system chops off leading directories until the name is less than the integer value
of this variable. Three dots, ..., indicate a truncated name. The user can establish
this variable buffer locally with the Defhvar command.

If the user has modified the buffer since the last time it was read from or save to a file,
then the modeline contains an asterisk (*) between the modes list and the file or buffer
name:

Hemlock USER: (Fundamental Fill) * /usr/slisp/hemlock/user.mss

This serves as a reminder that the buffer should be saved eventually.

There is a special modeline known as the status line which appears as the Echo Area’s
modeline. Hemlock and user code use this area to display general information not particular
to a buffer — recursive edits, whether you just received mail, etc.

1.7 Use with X Windows

You should use Hemlock on a workstation with a bitmap display and a windowing sys-
tem since Hemlock makes good use of a non-ASCII device, mouse, and the extra modifier
keys typically associated with workstations. This section discusses using Hemlock under X
windows, the only supported windowing system.

Chapter 1: Introduction 8

1.7.1 Window Groups

Hemlockmanages windows under X in groups. This allows Hemlock to be more sophisticated
in its window management without being rude in the X paradigm of screen usage. With
window groups, Hemlock can ignore where the groups are, but within a group, it can
maintain the window creation and deletion behavior users expect in editors without any
interference from window managers.

Initially there are two groups, a main window and the Echo Area. If you keep a pop-up
display, see section [pop-up], page 5, Hemlock puts the window it creates in its own group.
There are commands for creating new groups.

Hemlock only links windows within a group for purposes of the Next Window, Previous
Window, and Delete Next Window commands. To move between groups, you must use the
Point to Here command bound to the mouse.

Window manager commands can reshape and move groups on the screen.

1.7.2 Event Translation

Each X key event is translated into a canonical input representation, a key-event. The X
key event consists of a scan-code and modifier bits, and these translate to an X keysym.
This keysym and the modifier bits map to a key-event.

If you type a key with a shift key held down, this typically maps to a distinct X keysym.
For example, the shift of 3 is #, and these have different X keysyms. Some keys map to
the same X keysym regardless of the shift bit, such as Tab, Space, Return, etc. When the
X lock bit is on, the system treats this as a caps-lock, only mapping keysyms for lowercase
letters to shifted keysyms.

The key-event has a keysym and a field of bits. The X keysyms map directly to the
key-event keysyms. There is a distinct mapping for each CLX modifier bit to a key-event
bit. This tends to eliminate shift and lock modifiers, so key-events usually only have con-
trol, meta, hyper, and super bits on. Hyper and super usually get turned on with prefix
key-events that set them on the following key-event, but you can turn certain keys on
the keyboard into hyper and super keys. See the X manuals and the Hemlock Command
Implementor’s Manual for details.

The system also maps mouse input to key-events. Each mouse button has distinct key-
event keysyms for whether the user pressed or released it. For convenience, Hemlock makes
use of an odd property of converting mouse events to key-events. If you enter a mouse event
with the shift key held down, Hemlock sees the key-event keysym for the mouse event, but
the key-event has the super bit turned on. For example, if you press the left button with
the shift key pressed, Hemlock sees S-Leftdown.

Note that with the two button mouse on the IBM RT PC, the only way to to send
Middledown is to press both the left and right buttons simultaneously. This is awkward,
and it often confuses the X server. For this reason, the commands bound to the middle
button are also bound to the shifted left button, S-Leftdown, which is much easier to type.

1.7.3 Cut Buffer Commands

These commands allow the X cut buffer to be used from Hemlock . Although Hemlock can
cut arbitrarily large regions, a bug in the standard version 10 xterm prevents large regions
from being pasted into an xterm window.

Chapter 1: Introduction 9

[Command]Region to Cut Buffer (bound to M-Insert)
[Command]Insert Cut Buffer (bound to Insert)

These commands manipulate the X cut buffer. Region to Cut Buffer puts the text in
the region into the cut buffer. Insert Cut Buffer inserts the contents of the cut buffer
at the point.

1.7.4 Redisplay and Screen Management

These variables control a number of the characteristics of Hemlock bitmap screen manage-
ment.

[Hemlock Variable]Bell Style (initial value :border-flash)
[Hemlock Variable]Beep Border Width (initial value 20)

Bell Style determines what beeps do in Hemlock. Acceptable values are :border-flash,
:feep, :border-flash-and-feep, :flash, :flash-and-feep, and nil (do nothing).

Beep Border Width is the width in pixels of the border flashed by border flash beep
styles.

[Hemlock Variable]Reverse Video (initial value nil)
If this variable is true, then Hemlock paints white on black in window bodies, black
on white in modelines.

[Hemlock Variable]Thumb Bar Meter (initial value t)
If this variable is true, then windows will be created to be displayed with a ruler in
the bottom border of the window.

[Hemlock Variable]Set Window Autoraise (initial value :echo-only)
When true, changing the current window will automatically raise the new current
window. If the value is :echo-only, then only the echo area window will be raised
automatically upon becoming current.

[Hemlock Variable]Default Initial Window Width (initial value 80)
[Hemlock Variable]Default Initial Window Height (initial value 24)
[Hemlock Variable]Default Initial Window X
[Hemlock Variable]Default Initial Window Y
[Hemlock Variable]Default Window Height (initial value 24)
[Hemlock Variable]Default Window Width (initial value 80)

Hemlock uses the variables with "Initial" in their names when it first starts up to
make its first window. The width and height are specified in character units, but the
x and y are specified in pixels. The other variables determine the width and height for
interactive window creation, such as making a window with [New Window], page 38.

[Hemlock Variable]Cursor Bitmap File (initial value "library:hemlock.cursor")
This variable determines where the mouse cursor bitmap is read from when Hemlock
starts up. The mask is found by merging this name with ".mask". This has to be a
full pathname for the C routine.

[Hemlock Variable]Default Font
This variable holds the string name of the font to be used for normal text display:
buffer text, modelines, random typeout, etc. The font is loaded at initialization time,

Chapter 1: Introduction 10

so this variable must be set before entering Hemlock. When nil, the display type is
used to choose a font.

1.8 Use With Terminals

Hemlock can also be used with ASCII terminals and terminal emulators. Capabilities that
depend on X windows (such as mouse commands) are not available, but nearly everything
else can be done.

1.8.1 Terminal Initialization

For best redisplay performance, it is very important to set the terminal speed:

stty 2400

Often when running Hemlock using TTY redisplay, Hemlock will actually be talking to
a PTY whose speed is initialized to infinity. In reality, the terminal will be much slower,
resulting in Hemlock’s output getting way ahead of the terminal. This prevents Hemlock
from briefly stopping redisplay to allow the terminal to catch up. See also [Scroll Redraw
Ratio], page 11.

The terminal control sequences are obtained from the termcap database using the nor-
mal Unix conventions. The "TERM" environment variable holds the terminal type. The
"TERMCAP" environment variable can be used to override the default termcap database
(in "/etc/termcap"). The size of the terminal can be altered from the termcap default
through the use of:

stty rows height columns width

1.8.2 Terminal Input

The most important limitation of a terminal is its input capabilities. On a workstation with
function keys and independent control, meta, and shift modifiers, it is possible to type 800
or so distinct single keystrokes. Although by default, Hemlock uses only a fraction of these
combinations, there are many more than the 128 key-events available in ASCII.

On a terminal, Hemlock attempts to translate ASCII control characters into the most
useful key-event:

• On a terminal, control does not compose with shift. If the control key is down when
you type a letter keys, the terminal always sends one code regardless of whether the
shift key is held. Since Hemlock primarily binds commands to key-events with keysyms
representing lowercase letters regardless of what bits are set in the key-event, the system
translates the ASCII control codes to a keysym representing the appropriate lowercase
characters. This keysym then forms a key-event with the control bit set. Users can type
C-c followed by an uppercase character to form a key-event with a keysym representing
an uppercase character and bits with the control bit set.

• On a terminal, some of the named keys generate an ASCII control code. For example,
Return usually sends a C-m. The system translates these ASCII codes to a key-event
with an appropriate keysym instead of the keysym named by the character which names
the ASCII code. In the above example, typing the Return key would generate a key-
event with the Return keysym and no bits. It would NOT translate to a key-event
with the m keysym and the control bit.

Chapter 1: Introduction 11

Since terminals have no meta key, you must use the Escape and C-Z modifier-prefix
key-events to invoke commands bound to key-events with the meta bit or meta and control
bits set. ASCII terminals cannot generate all key-events which have the control bit on, so
you can use the C-^ modifier-prefix. The C-c prefix sets the hyper bit on the next key-event
typed.

When running Hemlock from a terminal ^\ is the interrupt key-event. Typing this will
place you in the Lisp debugger.

When using a terminal, pop-up output windows cannot be retained after the completion
of the command.

1.8.3 Terminal Redisplay

Redisplay is substantially different on a terminal. Hemlock uses different algorithms, and
different parameters control redisplay and screen management.

Terminal redisplay uses the Unix termcap database to find out how to use a terminal.
Hemlock is useful with terminals that lack capabilities for inserting and deleting lines and
characters, and some terminal emulators implement these operations very inefficiently (such
as xterm). If you realize poor performance when scrolling, create a termcap entry that
excludes these capabilities.

[Hemlock Variable]Scroll Redraw Ratio (initial value nil)
This is a ratio of "inserted" lines to the size of a window. When this ratio is exceeded,
insert/delete line terminal optimization is aborted, and every altered line is simply
redrawn as efficiently as possible. For example, setting this to 1/4 will cause scrolling
commands to redraw the entire window instead of moving the bottom two lines of the
window to the top (typically 3/4 of the window is being deleted upward and inserted
downward, hence a redraw); however, commands like New Line and Open Line will still
work efficiently, inserting a line and moving the rest of the window’s text downward.

1.9 The Echo Area

The echo area is the region which occupies the bottom few lines on the screen. It is used
for two purposes: displaying brief messages to the user and prompting.

When a command needs some information from the user, it requests it by displaying a
prompt in the echo area. The following is a typical prompt:

Select Buffer: [hemlock-init.lisp /usr/foo/]

The general format of a prompt is a one or two word description of the input requested,
possibly followed by a default in brackets. The default is a standard response to the prompt
that Hemlock uses if you type Return without giving any other input.

There are four general kinds of prompts:

key-event The response is a single key-event and no confirming Return is needed.

keyword The response is a selection from one of a limited number of choices. Completion
is available using Space and Escape, and you only need to supply enough of the
keyword to distinguish it from any other choice. In some cases a keyword
prompt accepts unknown input, indicating the prompter should create a new
entry. If this is the case, then you must enter the keyword fully specified or

Chapter 1: Introduction 12

completed using Escape; this distinguishes entering an old keyword from making
a new keyword which is a prefix of an old one since the system completes partial
input automatically.

file The response is the name of a file, which may have to exist. Unlike other
prompts, the default has some effect even after the user supplies some input:
the system merges the default with the input filename. See page [merging],
page 37 for a description of filename merging. Escape and Space complete the
input for a file parse.

string The response is a string which must satisfy some property, such as being the
name of an existing file.

These key-events have special meanings when prompting:

Return Confirm the current parse. If no input has been entered, then use the default.
If for some reason the input is unacceptable, Hemlock does two things:

1. beeps, if the variable Beep on Ambiguity set, and

2. moves the point to the end of the first word requiring disambiguation.

This allows you to add to the input before confirming the it again.

Home, C-
Print some sort of help message. If the parse is a keyword parse, then print all
the possible completions of the current input in a pop-up window.

Escape Attempt to complete the input to a keyword or file parse as far as possible,
beeping if the result is ambiguous. When the result is ambiguous, Hemlock
moves the point to the first ambiguous field, which may be the end of the
completed input.

Space In a keyword parse, attempt to complete the input up to the next space. This is
useful for completing the names of Hemlock commands and similar things with-
out beeping a lot, and you can continue entering fields while leaving previous
fields ambiguous. For example, you can invoke Forward Word as an extended
command by typing M-X f Space w Return. Each time the user enters space,
Hemlock attempts to complete the current field and all previous fields.

C-i, Tab In a string or keyword parse, insert the default so that it may be edited.

C-p Retrieve the text of the last string input from a history of echo area inputs.
Repeating this moves to successively earlier inputs.

C-n Go the other way in the echo area history.

C-q Quote the next key-event so that it is not interpreted as a command.

[Hemlock Variable]Ignore File Types
This variable is a list of file types (or extensions), represented as a string without the
dot, e.g. "fasl". Files having any of the specified types will be considered nonexistent
for completion purposes, making an unambiguous completion more likely. The initial
value contains most common binary and output file types.

Chapter 1: Introduction 13

1.10 Online Help

Hemlock has a fairly good online documentation facility. You can get brief documentation
for every command, variable, character attribute, and key by typing a key.

[Command]Help (bound to Home, C-)
This command prompt for a key-event indicating one of a number of other documen-
tation commands. The following are valid responses:

a List commands and other things whose names contain a specified key-
word.

d Give the documentation and bindings for a specified command.

g Give the documentation for any Hemlock thing.

v Give the documentation for a Hemlock variable and its values.

c Give the documentation for a command bound to some key.

l List the last sixty key-events typed.

m Give the documentation for a mode followed by a short description of its
mode-specific bindings.

p Give the documentation and bindings for commands that have at least
one binding involving a mouse/pointer key-event.

w List all the key bindings for a specified command.

t Describe a Lisp object.

q Quit without doing anything.

Home, C- , ?, h
List all of the options and what they do.

[Command]Apropos (bound to Home a, C- a)
This command prints brief documentation for all commands, variables, and character
attributes whose names match the input. This performs a prefix match on each
supplied word separately, intersecting the names in each word’s result. For example,
giving Apropos "f m" causes it to tersely describe following commands and variables:

• Auto Fill Mode

• Fundamental Mode

• Mark Form

• Default Modeline Fields

• Fill Mode Hook

• Fundamental Mode Hook

Notice Mark Form demonstrates that the "f" words may follow the "m" order of the
fields does not matter for Apropos.

The bindings of commands and values of variables are printed with the documentation.

Chapter 1: Introduction 14

[Command]Describe Command (bound to Home d, C- d)
This command prompts for a command and prints its full documentation and all the
keys bound to it.

[Command]Describe Key (bound to Home c, C- c, M-?)
This command prints full documentation for the command which is bound to the
specified key in the current environment.

[Command]Describe Mode (bound to Home m, C- m)
This command prints the documentation for a mode followed by a short description
of each of its mode-specific bindings.

[Command]Show Variable
[Command]Describe and Show Variable

Show Variable prompts for the name of a variable and displays the global value of the
variable, the value local to the current buffer (if any), and the value of the variable in
all defined modes that have it as a local variable. Describe and Show Variable displays
the variable’s documentation in addition to the values.

[Command]What Lossage (bound to Home l, C- l)
This command displays the last sixty key-events typed. This can be useful if, for
example, you are curious what the command was that you typed by accident.

[Command]Describe Pointer
This command displays the documentation and bindings for commands that have
some binding involving a mouse/pointer key-event. It will not show the documenta-
tion for the Illegal command regardless of whether it has a pointer binding.

[Command]Where Is (bound to Home w, C- w)
This command prompts for the name of a command and displays its key bindings
in a pop-up window. If a key binding is not global, the environment in which it is
available is displayed.

[Command]Generic Describe (bound to Home g, C- g)
This command prints full documentation for any thing that has documentation. It
first prompts for the kind of thing to document, the following options being available:

attribute Describe a character attribute, given its name.

command Describe a command, given its name.

key Describe a command, given a key to which it is bound.

variable Describe a variable, given its name. This is the default.

1.11 Entering and Exiting

Hemlock is entered by using the Common Lisp ed function. Simply typing (ed) will enter
Hemlock, leaving you in the state that you were in when you left it. If Hemlock has never
been entered before then the current buffer will be Main. The -edit command-line switch
may also be used to enter Hemlock: see page [edit-switch], page 83.

Chapter 1: Introduction 15

ed may optionally be given a file name or a symbol argument. Typing (ed filename)
will cause the specified file to be read into Hemlock, as though by Find File. Typing (ed
symbol) will pretty-print the definition of the symbol into a buffer whose name is obtained
by adding "Edit " to the beginning of the symbol’s name.

[Command]Exit Hemlock (bound to C-c, C-x C-z)
[Command]Pause Hemlock

Exit Hemlock exits Hemlock, returning t. Exit Hemlock does not by default save
modified buffers, or do anything else that you might think it should do; it simply
exits. At any time after exiting you may reenter by typing (ed) to Lisp without losing
anything. Before you quit from Lisp using (quit), you should save any modified files
that you want to be saved.

Pause Hemlock is similar, but it suspends the Lisp process and returns control to the
shell. When the process is resumed, it will still be running Hemlock.

1.12 Helpful Information

This section contains assorted helpful information which may be useful in staying out of
trouble or getting out of trouble.

• It is possible to get some sort of help nearly everywhere by typing Home or C- .

• Various commands take over the keyboard and insist that you type the key-events that
they want as input. If you get in such a situation and want to get out, you can usually
do so by typing C-g some small number of times. If this fails you can try typing C-x
C-z to exit Hemlock and then "(ed)" to re-enter it.

• Before you quit, make sure you have saved all your changes. C-u C-x C-b will display
a list of all modified buffers. If you exit using C-x M-z, then Hemlock will save all
modified buffers with associated files.

• If you lose changes to a file due to a crash or accidental failure to save, look for backup
("file.BAK") or checkpoint ("file.CKP") files in the same directory where the file was.

• If the screen changes unexpectedly, you may have accidentally typed an incorrect com-
mand. Use Home l to see what it was. If you are not familiar with the command,
use Home c to see what it is so that you know what damage has been done. Many
interesting commands can be found in this fashion. This is an example of the much-
underrated learning technique known as "Learning by serendipitous malcoordination".
Who would ever think of looking for a command that deletes all files in the current
directory?

• If you accidentally type a "killing" command such as C-w, you can get the lost text
back using C-y. The Undo command is also useful for recovering from this sort of
problem.

[Hemlock Variable]Region Query Size (initial value 30)
Various commands ask for confirmation before modifying a region containing more
than this number of lines. If this is nil, then these commands refrain from asking, no
matter how large the region is.

[Command]Undo
This command undoes the last major modification. Killing commands and some
other commands save information about their modifications, so accidental uses may

Chapter 1: Introduction 16

be retracted. This command displays the name of the operation to be undone and
asks for confirmation. If the affected text has been modified between the invocations
of Undo and the command to be undone, then the result may be somewhat incorrect
but useful. Often Undo itself can be undone by invoking it again.

1.13 Recursive Edits

Some sophisticated commands, such as Query Replace, can place you in a recursive edit.
A recursive edit is simply a recursive invocation of Hemlock done within a command. A
recursive edit is useful because it allows arbitrary editing to be done during the execution
of a command without losing any state that the command might have. When the user
exits a recursive edit, the command that entered it proceeds as though nothing happened.
Hemlock notes recursive edits in the Echo Area modeline, or status line. A counter reflects
the number of pending recursive edits.

[Command]Exit Recursive Edit (bound to C-M-z)
This command exits the current recursive edit, returning nil. If invoked when not in
a recursive edit, then this signals an user error.

[Command]Abort Recursive Edit (bound to C-])
This command causes the command which invoked the recursive edit to get an error.
If not in a recursive edit, this signals an user error.

1.14 User Errors

When in the course of editing, Hemlock is unable to do what it thinks you want to do,
then it brings this to your attention by a beep or a screen flash (possibly accompanied by
an explanatory echo area message such as "No next line.".) Although the exact attention-
getting mechanism may vary on the output device and variable settings, this is always called
beeping.

Whatever the circumstances, you had best try something else since Hemlock, being far
more stupid than you, is far more stubborn. Hemlock is an extensible editor, so it is always
possible to change the command that complained to do what you wanted it to do.

1.15 Internal Errors

A message of this form may appear in the echo area, accompanied by a beep:

Internal error:

Wrong type argument, NIL, should have been of type SIMPLE-VECTOR.

If the error message is a file related error such as the following, then you have probably
done something illegal which Hemlock did not catch, but was detected by the file system:

Internal error:

No access to "/lisp2/emacs/teco.mid"

Otherwise, you have found a bug. Try to avoid the behavior that resulted in the error and
report the problem to your system maintainer. Since Lisp has fairly robust error recovery
mechanisms, probably no damage has been done.

17

If a truly abominable error from which Hemlock cannot recover occurs, then you will be
thrown into the Lisp debugger. At this point it would be a good idea to save any changes
with save-all-buffers and then start a new Lisp.

The Lisp function save-all-buffers may be used to save modified buffers in a seriously
broken Hemlock. To use this, type "(save-all-buffers)" to the top-level ("* ") or debugger
("1] ") prompt and confirm saving of each buffer that should be saved. Since this function
will prompt in the "Lisp" window, it isn’t very useful when called inside of Hemlock.

18

2 Basic Commands

2.1 Motion Commands

There is a fairly small number of basic commands for moving around in the buffer. While
there are many other more complex motion commands, these are by far the most commonly
used and the easiest to learn.

[Command]Forward Character (bound to C-f, Rightarrow)
[Command]Backward Character (bound to C-b, Leftarrow)

Forward Character moves the point forward by one character. If a prefix argument is
supplied, then the point is moved by that many characters. Backward Character is
identical, except that it moves the point backwards.

[Command]Forward Word (bound to M-f)
[Command]Backward Word (bound to M-b)

These commands move the point forward and backward over words. The point is
always left between the last word and first non-word character in the direction of
motion. This means that after moving backward the cursor appears on the first
character of the word, while after moving forward, the cursor appears on the delimiting
character. Supplying a prefix argument moves the point by that many words.

[Command]Next Line (bound to C-n, Downarrow)
[Command]Previous Line (bound to C-p, Uparrow)
[Command]Goto Absolute Line

Next Line and Previous Line move to adjacent lines, while remaining the same distance
within a line. Note that this motion is by logical lines, each of which may take up
many lines on the screen if it wraps. If a prefix argument is supplied, then the point
is moved by that many lines.

The position within the line at the start is recorded, and each successive use of C-p or
C-n attempts to move the point to that position on the new line. If it is not possible
to move to the recorded position because the line is shorter, then the point is left at
the end of the line.

Goto Absolute Line moves to the indicated line, as if you counted them starting at the
beginning of the buffer with number one. If the user supplies a prefix argument, it is
the line number; otherwise, Hemlock prompts the user for the line.

[Command]End of Line (bound to C-e)
[Command]Beginning of Line (bound to C-a)

End of Line moves the point to the end of the current line, while Beginning of Line
moves to the beginning. If a prefix argument is supplied, then the point is moved to
the end or beginning of the line that many lines below the current one.

[Command]Scroll Window Down (bound to C-v)
[Command]Scroll Window Up (bound to M-v)

Scroll Window Down moves forward in the buffer by one screenful of text, the exact
amount being determined by the size of the window. If a prefix argument is supplied,
then this scrolls the screen that many lines. When this action scrolls the line with

Chapter 2: Basic Commands 19

the point off the screen, it this command moves the point to the vertical center of the
window. Scroll Window Up is identical to Scroll Window Down, except that it moves
backwards.

[Hemlock Variable]Scroll Overlap (initial value 2)
This variable is used by Scroll Window Down and Scroll Window Up to determine the
number of lines by which the new and old screen should overlap.

[Command]End of Buffer (bound to M-<)
[Command]Beginning of Buffer (bound to M->)

These commands are used to conveniently get to the very beginning and end of the
text in a buffer. Before the point is moved, its position is saved by pushing it on the
mark stack (see page [marks], page 19).

[Command]Top of Window (bound to M-,)
[Command]Bottom of Window (bound to M-.)

Top of Window moves the point to the beginning of the first line displayed in the
current window. Bottom of Window moves to the beginning of the last line displayed.

2.2 The Mark and The Region

Each buffer has a distinguished position known as the mark. The mark initially points to
the beginning of the buffer. The area between the mark and the point is known as the
region. Many Hemlock commands which manipulate large pieces of text use the text in the
region. To use these commands, one must first use some command to mark the region.

Although the mark is always pointing somewhere (initially to the beginning of the buffer),
region commands insist that the region be made active before it can be used. This prevents
accidental use of a region command from mysteriously mangling large amounts of text.

[Hemlock Variable]Active Regions Enabled (initial value t)
When this variable is true, region commands beep unless the region is active. This
may be set to nil for more traditional Emacs region semantics.

Once a marking command makes the region active, it remains active until:

• a command uses the region,

• a command modifies the buffer,

• a command changes the current window or buffer,

• a command signals an editor error,

• or the user types C-g.

Motion commands have the effect of redefining the region, since they move the point
and leave the region active.

Commands that insert a large chunk of text into the buffer usually set an ephemerally
active region around the inserted text. An ephemerally active region is always deactivated
by the next command, regardless of the kind of command. The ephemerally active re-
gion allows an immediately following region command to manipulate the inserted text, but
doesn’t persist annoyingly. This is also very useful with active region highlighting, since it
visibly marks the inserted text.

Chapter 2: Basic Commands 20

[Hemlock Variable]Highlight Active Region (initial value t)
[Hemlock Variable]Active Region Highlighting Font (initial value nil)

When Highlight Active Region is true, Hemlock displays the text in the region in a
different font whenever the region is active. This provides a visible indication of what
text will be manipulated by a region command. Active region highlighting is only
supported under X windows.

Active Region Highlighting Font is the name of the font to use for active region high-
lighting. If unspecified, Hemlock uses an underline font.

[Command]Set/Pop Mark (bound to C-@)
This command moves the mark to the point (saving the old mark on the mark stack)
and activates the region. After using this command to mark one end of the region,
use motion commands to move to the other end, then do the region command. This
is the traditional Emacsmarking command; when running under a windowing system
with mouse support, it is usually easier to use the mouse with the [Point to Here],
page 21 and [Generic Pointer Up], page 21.

For historical reasons, the prefix argument causes this command to do things that are
distinct commands in Hemlock. A prefix argument of four does Pop and Goto Mark,
and a prefix argument of 16 does Pop Mark.

[Command]Mark Whole Buffer (bound to C-x h)
[Command]Mark to Beginning of Buffer (bound to C-<)
[Command]Mark to End of Buffer (bound to C->)

Mark Whole Buffer sets the region around the whole buffer, with the point at the
beginning and the mark at the end. If a prefix argument is supplied, then the mark
is put at the beginning and the point at the end. The mark is pushed on the mark
stack beforehand, so popping the stack twice will restore it.

Mark to Beginning of Buffer sets the current region from point to the beginning of the
buffer.

Mark to End of Buffer sets the current region from the end of the buffer to point.

[Command]Activate Region (bound to C-x C-Space, C-x C-@)
This command makes the region active, using whatever the current position of the
mark happens to be. This is useful primarily when the region is accidentally deacti-
vated.

2.2.1 The Mark Stack

As was hinted at earlier, each buffer has a mark stack, providing a history of positions
in that buffer. The current mark is the mark on the top of the stack; earlier values are
recovered by popping the stack. Since commands that move a long distance save the old
position on the mark stack, the mark stack commands are useful for jumping to interesting
places in a buffer without having to do a search.

[Command]Pop Mark (bound to C-M-Space)
[Command]Pop and Goto Mark (bound to M-@, M-Space)

Pop Mark pops the mark stack, restoring the current mark to the next most recent
value. Pop and Goto Mark also pops the mark stack, but instead of discarding the

Chapter 2: Basic Commands 21

current mark, it moves the point to that position. Both commands deactivate the
region.

[Command]Exchange Point and Mark (bound to C-x C-x)
This command interchanges the position of the point and the mark, thus moving to
where the mark was, and leaving the mark where the point was. This command can
be used to switch between two positions in a buffer, since repeating it undoes its
effect. The old mark isn’t pushed on the mark stack, since it is saved in the point.

2.2.2 Using The Mouse

It can be convenient to use the mouse to point to positions in text, especially when moving
large distances. Hemlock defines several commands for using the mouse. These commands
can only be used when running under X windows (see page [using-x], page 7.)

[Command]Here to Top of Window (bound to Rightdown)
[Command]Top Line to Here (bound to Leftdown)

Here to Top of Window scrolls the window so as to move the line which is under the
mouse cursor to the top of the window. This has the effect of moving forward in
the buffer by the distance from the top of the window to the mouse cursor. Top
Line to Here is the inverse operation, it scrolls backward, moving current the top line
underneath the mouse.

If the mouse is near the left edge of a window, then these commands do smooth
scrolling. Here To Top of Window repeatedly scrolls the window up by one line until
the mouse button is released. Similarly, Top Line to Here smoothly scrolls down.

[Command]Point to Here (bound to Middledown, S-Leftdown)
This command moves the point to the position of the mouse, changing to a different
window if necessary.

When used in a window’s modeline, this moves the point of the window’s buffer to
the position within the file that is the same percentage, start to end, as the horizontal
position of the mouse within the modeline. This also makes this window current if
necessary.

This command supplies a function Generic Pointer Up invokes if it runs without any
intervening generic pointer up predecessors executing. If the position of the pointer
is different than the current point when the user invokes Generic Pointer Up, then this
function pushes a buffer mark at point and moves point to the pointer’s position.
This allows the user to mark off a region with the mouse.

[Command]Generic Pointer Up (bound to Middleup, S-Leftup)
Other commands determine this command’s action by supplying functions that this
command invokes. The following built-in commands supply the following generic up
actions:

Point to Here
When the position of the pointer is different than the current point, the
action pushes a buffer mark at point and moves point to the pointer’s
position.

Chapter 2: Basic Commands 22

Bufed Goto and Quit
The action is a no-op.

[Command]Insert Kill Buffer (bound to S-Rightdown)
This command is a combination of Point to Here and [Un-Kill], page 23. It moves the
point to the mouse location and inserts the most recently killed text.

2.3 Modification Commands

There is a wide variety of basic text-modification commands, but once again the simplest
ones are the most often used.

2.3.1 Inserting Characters

In Hemlock, you can insert characters with graphic representations by typing the corre-
sponding key-event which you normally generate with the obvious keyboard key. You can
only insert characters whose codes correspond to ASCII codes. To insert those without
graphic representations, use Quoted Insert.

[Command]Self Insert
Self Insert inserts into the buffer the character corresponding to the key-event typed to
invoke the command. This command is normally bound to all such key-events Space.
If a prefix argument is supplied, then this inserts the character that many times.

[Command]New Line (bound to Return)
This command, which has roughly the same effect as inserting a Newline, is used to
move onto a new blank line. If there are at least two blank lines beneath the current
one then Return cleans off any whitespace on the next line and uses it, instead of
inserting a newline. This behavior is desirable when inserting in the middle of text,
because the bottom half of the screen does not scroll down each time New Line is
used.

[Command]Quoted Insert (bound to C-q)
Many key-events have corresponding ASCII characters, but these key-events are
bound to commands other than Self Insert. Sometimes they are otherwise encum-
bered such as with C-g. Quoted Insert prompts for a key-event, without any command
interpretation semantics, and inserts the corresponding character. If the appropriate
character has some code other than an ASCII code, this will beep and abort the
command. A common use for this command is inserting a Formfeed by typing C-q
C-l. If a prefix argument is supplied, then the character is inserted that many times.

[Command]Open Line (bound to C-o)
This command inserts a newline into the buffer without moving the point. This
command may also be given a prefix argument to insert a number of newlines, thus
opening up some room to work in the middle of a screen of text. See also [Delete
Blank Lines], page 26.

2.3.2 Deleting Characters

There are a number of commands for deleting characters as well.

Chapter 2: Basic Commands 23

[Hemlock Variable]Character Deletion Threshold (initial value 5)
If more than this many characters are deleted by a character deletion command, then
the deleted text is placed in the kill ring.

[Command]Delete Next Character (bound to C-d)
[Command]Delete Previous Character (bound to Delete, Backspace)

Delete Next Character deletes the character immediately following the point, that is,
the character which appears under the cursor. When given a prefix argument, C-d
deletes that many characters after the point. Delete Previous Character is identical,
except that it deletes characters before the point.

[Command]Delete Previous Character Expanding Tabs
Delete Previous Character Expanding Tabs is identical to Delete Previous Character,
except that it treats tabs as the equivalent number of spaces. Various language
modes that use tabs for indentation bind Delete to this command.

2.3.3 Killing and Deleting

Hemlock has many commands which kill text. Killing is a variety of deletion which saves
the deleted text for later retrieval. The killed text is saved in a ring buffer known as the
kill ring. Killing has two main advantages over deletion:

1. If text is accidentally killed, a not uncommon occurrence, then it can be restored.

2. Text can be moved from one place to another by killing it and then restoring it in the
new location.

Killing is not the same as deleting. When a command is said to delete text, the text is
permanently gone and is not pushed on the kill ring. Commands which delete text generally
only delete things of little importance, such as single characters or whitespace.

2.3.4 Kill Ring Manipulation

[Command]Un-Kill (bound to C-y)
This command "yanks" back the most recently killed piece of text, leaving the mark
before the inserted text and the point after. If a prefix argument is supplied, then
the text that distance back in the kill ring is yanked.

[Command]Rotate Kill Ring (bound to M-y)
This command rotates the kill ring forward, replacing the most recently yanked text
with the next most recent text in the kill ring. M-y may only be used immediately
after a use of C-y or a previous use of M-y. This command is used to step back
through the text in the kill ring if the desired text was not the most recently killed,
and thus could not be retrieved directly with a C-y. If a prefix argument is supplied,
then the kill ring is rotated that many times.

[Command]Kill Region (bound to C-w)
This command kills the text between the point and mark, pushing it onto the kill
ring. This command is usually the best way to move or remove large quantities of
text.

Chapter 2: Basic Commands 24

[Command]Save Region (bound to M-w)
This command pushes the text in the region on the kill ring, but doesn’t actually kill
it, giving an effect similar to typing C-w C-y. This command is useful for duplicating
large pieces of text.

2.3.5 Killing Commands

Most commands which kill text append into the kill ring, meaning that consecutive uses of
killing commands will insert all text killed into the top entry in the kill ring. This allows
large pieces of text to be killed by repeatedly using a killing command.

[Command]Kill Line (bound to C-k)
[Command]Backward Kill Line

Kill Line kills the text from the point to the end of the current line, deleting the line
if it is empty. If a prefix argument is supplied, then that many lines are killed. Note
that a prefix argument is not the same as a repeat count.

Backward Kill Line is similar, except that it kills from the point to the beginning of
the line. If it is called at the beginning of the line, it kills the newline and any trailing
whitespace on the previous line. With a prefix argument, this command is the same
as Kill Line with a negated argument.

[Command]Kill Next Word (bound to M-d)
[Command]Kill Previous Word (bound to M-Backspace, M-Delete)

Kill Next Word kills from the point to the end of the current or next word. If a prefix
argument is supplied, then that many words are killed. Kill Previous Word is identical,
except that it kills backward.

2.3.6 Case Modification Commands

Hemlock provides a few case modification commands, which are often useful for correcting
typos.

[Command]Capitalize Word (bound to M-c)
[Command]Lowercase Word (bound to M-l)
[Command]Uppercase Word (bound to M-u)

These commands modify the case of the characters from the point to the end of
the current or next word, leaving the point after the end of the word affected. A
positive prefix argument modifies that many words, moving forward. A negative
prefix argument modifies that many words before the point, but leaves the point
unmoved.

[Command]Lowercase Region (bound to C-x C-l)
[Command]Uppercase Region (bound to C-x C-u)

These commands case-fold the text in the region. Since these commands can damage
large amounts of text, they ask for confirmation before modifying large regions and
can be undone with Undo.

2.3.7 Transposition Commands

Hemlock provides a number of transposition commands. A transposition command swaps
the "things" before and after the point and moves forward one "thing". Just how a "thing"

Chapter 2: Basic Commands 25

is defined depends on the particular transposition command. Transposition commands,
particularly Transpose Characters and Transpose Words, are useful for correcting typos. More
obscure transposition commands can be used to amaze your friends and demonstrate your
immense knowledge of exotic Emacscommands.

To the uninitiated, the behavior of transposition commands may seem mysterious; this
has led some implementors to attempt to improve the definition of transposition, but right-
thinking people will accept no substitutes. The Emacs transposition definition used in
Hemlock has two useful properties:

1. Repeated applications of a transposition command have a useful effect. The way to
visualize this effect is that each use of the transposition command drags the previous
thing over the next thing. It is possible to correct double transpositions easily using
Transpose Characters.

2. Transposition commands move backward with a negative prefix argument, thus undoing
the effect of the equivalent positive argument.

[Command]Transpose Characters (bound to C-t)
This command exchanges the characters on either side of the point and moves forward,
unless at the end of a line, in which case it transposes the previous two characters
without moving.

[Command]Transpose Lines (bound to C-x C-t)
This command transposes the previous and current line, moving down to the next
line. With a zero argument, it transposes the current line and the line the mark is
on.

[Command]Transpose Words (bound to M-t)
This command transposes the previous word and the current or next word.

[Command]Transpose Regions (bound to C-x t)
This command transposes two regions with endpoints defined by the mark stack and
point. To use this command, place three marks (in order) at the start and end of the
first region, and at the start of the second region, then place the point at the end of
the second region. Unlike the other transposition commands, a second use will simply
undo the effect of the first use, and to do even this, you must reactivate the current
region.

2.3.8 Whitespace Manipulation

These commands change the amount of space between words. See also the indentation
commands in section [indentation], page 64.

[Command]Just One Space (bound to M-|)
This command deletes all whitespace characters before and after the point and then
inserts one space. If a prefix argument is supplied, then that number of spaces is
inserted.

[Command]Delete Horizontal Space (bound to M-\)
This command deletes all blank characters around the point.

Chapter 2: Basic Commands 26

[Command]Delete Blank Lines (bound to C-x C-o)
This command deletes all blank lines surrounding the current line, leaving the point
on a single blank line. If the point is already on a single blank line, then that line is
deleted. If the point is on a non-blank line, then all blank lines immediately following
that line are deleted. This command is often used to clean up after [Open Line],
page 22.

2.4 Filtering

Filtering is a simple way to perform a fairly arbitrary transformation on text. Filtering text
replaces the string in each line with the result of applying a Lisp function of one argument
to that string. The function must neither destructively modify the argument nor the return
value. It is an error for the function to return a string containing newline characters.

[Command]Filter Region
This function prompts for an expression which is evaluated to obtain a function to
be used to filter the text in the region. For example, to capitalize all the words in the
region one could respond:

Function: #’string-capitalize

Since the function may be called many times, it should probably be compiled. Func-
tions for one-time use can be compiled using the compile function as in the following
example which removes all the semicolons on any line which contains the string "PAS-
CAL":

Function: (compile nil ’(lambda (s)

(if (search "PASCAL" s)

(remove #\; s)

s)))

2.5 Searching and Replacing

Searching for some string known to appear in the text is a commonly used method of moving
long distances in a file. Replacing occurrences of one pattern with another is a useful way
to make many simple changes to text. Hemlock provides powerful commands for doing both
of these operations.

[Hemlock Variable]String Search Ignore Case (initial value t)
This variable determines the kind of search done by searching and replacing com-
mands.

[Command]Incremental Search (bound to C-s)
[Command]Reverse Incremental Search (bound to C-r)

Incremental Search searches for an occurrence of a string after the current point. It is
known as an incremental search because it reads key-events form the keyboard one
at a time and immediately searches for the pattern of corresponding characters as
you type. This is useful because it is possible to initially type in a very short pattern
and then add more characters if it turns out that this pattern has too many spurious
matches.

Chapter 2: Basic Commands 27

This command dispatches on the following key-events as sub-commands:

C-s Search forward for an occurrence of the current pattern. This can be used
repeatedly to skip from one occurrence of the pattern to the next, or it
can be used to change the direction of the search if it is currently a reverse
search. If C-s is typed when the search string is empty, then a search is
done for the string that was used by the last searching command.

C-r Similar to C-s, except that it searches backwards.

Delete, Backspace
Undoes the effect of the last key-event typed. If that key-event simply
added to the search pattern, then this removes the character from the
pattern, moving back to the last match found before entering the removed
character. If the character was a C-s or C-r, then this moves back to the
previous match and possibly reverses the search direction.

C-g If the search is currently failing, meaning that there is no occurrence of
the search pattern in the direction of search, then C-g deletes enough
characters off the end of the pattern to make it successful. If the search is
currently successful, then C-g causes the search to be aborted, leaving the
point where it was when the search started. Aborting the search inhibits
the saving of the current search pattern as the last search string.

Escape Exit at the current position in the text, unless the search string is empty,
in which case a non-incremental string search is entered.

C-q Search for the character corresponding to the next key-event, rather than
treating it as a command.

Any key-event not corresponding to a graphic character, except those just described,
causes the search to exit. Hemlock then uses the key-event in it normal command
interpretation.

For example, typing C-a will exit the search and go to the beginning of the current line.
When either of these commands successfully exits, they push the starting position
(before the search) on the mark stack. If the current region was active when the
search started, this foregoes pushing a mark.

[Command]Forward Search (bound to M-s)
[Command]Reverse Search (bound to M-r)

These commands do a normal dumb string search, prompting for the search string in
a normal dumb fashion. One reason for using a non-incremental search is that it may
be faster since it is possible to specify a long search string from the very start. Since
Hemlock uses the Boyer–Moore search algorithm, the speed of the search increases
with the size of the search string. When either of these commands successfully exits,
they push the starting position (before the search) on the mark stack. This is inhibited
when the current region is active.

[Command]Query Replace (bound to M-%)
This command prompts in the echo area for a target string and a replacement string.
It then searches for an occurrence of the target after the point. When it finds a match,

Chapter 2: Basic Commands 28

it prompts for a key-event indicating what action to take. The following are valid
responses:

Space, y Replace this occurrence of the target with the replacement string, and
search again.

Delete, Backspace, n
Do not replace this occurrence, but continue the search.

! Replace this and all remaining occurrences without prompting again.

. Replace this occurrence and exit.

C-r Go into a recursive edit (see page [recursive-edits], page 16) at the cur-
rent location. The search will be continued from wherever the point is
left when the recursive edit is exited. This is useful for handling more
complicated cases where a simple replacement will not achieve the desired
effect.

Escape Exit without doing any replacement.

Home, C- , ?, h
Print a list of all the options available.

Any other key-event causes the command to exit, returning the key-event to the input
stream; thus, Hemlock will interpret it normally for a command binding.

When the current region is active, this command uses it instead of the region from
point to the end of the buffer. This is especially useful when you expect to use the !
option.

If the replacement string is all lowercase, then a heuristic is used that attempts to
make the case of the replacement the same as that of the particular occurrence of
the target pattern. If "foo" is being replaced with "bar" then "Foo" is replaced with
"Bar" and "FOO" with "BAR".

This command may be undone with Undo, but its undoing may not be undone. On a
successful exit from this command, the starting position (before the search) is pushed
on the mark stack.

[Hemlock Variable]Case Replace (initial value t)
If this variable is true then the case preserving heuristic in Query Replace is enabled,
otherwise all replacements are done with the replacement string exactly as specified.

[Command]Replace String
This command is the same as Query Replace except it operates without ever querying
the user before making replacements. After prompting for a target and replacement
string, it replaces all occurrences of the target string following the point. If a prefix
argument is specified, then only that many occurrences are replaced. When the
current region is active, this command uses it instead of the region from point to the
end of the buffer.

[Command]List Matching Lines
This command prompts for a search string and displays in a pop-up window all the
lines containing the string that are after the point. If a prefix argument is specified,

Chapter 2: Basic Commands 29

then this displays that many lines before and after each matching line. When the
current region is active, this command uses it instead of the region from point to the
end of the buffer.

[Command]Delete Matching Lines
[Command]Delete Non-Matching Lines

Delete Matching Lines prompts for a search string and deletes all lines containing the
string that are after the point. Similarly, Delete Non-Matching Lines deletes all lines
following the point that do not contain the specified string. When the current region
is active, these commands uses it instead of the region from point to the end of the
buffer.

2.6 Page Commands

Another unit of text recognized by Hemlock is the page. A page is a piece of text delimited
by formfeeds (^L’s.) The first non-blank line after the page marker is the page title. The
page commands are quite useful when logically distinct parts of a file are put on separate
pages. See also [Count Lines Page], page 30. These commands only recognize ^L’s at the
beginning of a lines, so those quoted in string literals do not get in the way.

[Command]Previous Page (bound to C-x])
[Command]Next Page (bound to C-x [)

Previous Page moves the point to the previous page delimiter, while Next Page moves
to the next one. Any page delimiters next to the point are skipped. The prefix
argument is a repeat count.

[Command]Mark Page (bound to C-x C-p)
This command puts the point at the beginning of the current page and the mark at
the end. If given a prefix argument, marks the page that many pages from the current
one.

[Command]Goto Page
This command does various things, depending on the prefix argument:

no argument
goes to the next page.

positive argument
goes to an absolute page number, moving that many pages from the
beginning of the file.

zero argument
prompts for string and goes to the page with that string in its title.
Repeated invocations in this manner continue searching from the point
of the last find, and a first search with a particular pattern pushes a buffer
mark.

negative argument
moves backward by that many pages, if possible.

Chapter 2: Basic Commands 30

[Command]View Page Directory
[Command]Insert Page Directory

View Page Directory uses a pop-up window to display the number and title of each
page in the current buffer. Insert Page Directory is the same except that it inserts
the text at the beginning of the buffer. With a prefix argument, Insert Page Directory
inserts at the point.

2.7 Counting Commands

[Command]Count Words
This command counts the number of words from the current point to the end of the
buffer, displaying a message in the echo area. When the current region is active, this
uses it instead of the region from the point to the end of the buffer. Word delimiters
are determined by the current major mode.

[Command]Count Lines
This command counts the number of lines from the current point to the end of the
buffer, displaying a message in the echo area. When the current region is active, this
uses it instead of the region from the point to the end of the buffer.

[Command]Count Lines Page (bound to C-x l)
This command displays the number of lines in the current page and the number of
lines before and after the point within that page. If given a prefix argument, the
entire buffer is counted instead of just the current page.

[Command]Count Occurrences
This command prompts for a search string and displays the number of occurrences
of that string in the text from the point to the end of the buffer. When the current
region is active, this uses it instead of the region from the point to the end of the
buffer.

2.8 Registers

Registers allow you to save a text position or chunk of text associated with a key-event.
This is a convenient way to repeatedly access a commonly-used location or text fragment.
The concept and key bindings should be familiar to TECO users.

[Command]Save Position (bound to C-x s)
[Command]Jump to Saved Position (bound to C-x j)

These commands manipulate registers containing textual positions. Save Position
prompts for a register and saves the location of the current point in that register.
Jump to Saved Position prompts for a register and moves the point to the position
saved in that register. If the saved position is in a different buffer, then that buffer is
made current.

[Command]Put Register (bound to C-x x)
[Command]Get Register (bound to C-x g)

These commands manipulate registers containing text. Put Register prompts for a
register and puts the text in the current region into the register. Get Register prompts
for a register and inserts the text in that register at the current point.

31

[Command]List Registers
[Command]Kill Register

List Registers displays a list of all the currently defined registers in a pop-up window,
along with a brief description of their contents. Kill Register prompts for the name of
a register and deletes that register.

32

3 Files, Buffers, and Windows

3.1 Introduction

Hemlock provides three different abstractions which are used in combination to solve the
text-editing problem, while other editors tend to mash these ideas together into two or even
one.

File A file provides permanent storage of text. Hemlock has commands to read files
into buffers and write buffers out into files.

Buffer A buffer provides temporary storage of text and a capability to edit it. A buffer
may or may not have a file associated with it; if it does, the text in the buffer
need bear no particular relation to the text in the file. In addition, text in a
buffer may be displayed in any number of windows, or may not be displayed at
all.

Window A window displays some portion of a buffer on the screen. There may be any
number of windows on the screen, each of which may display any position in any
buffer. It is thus possible, and often useful, to have several windows displaying
different places in the same buffer.

3.2 Buffers

In addition to some text, a buffer has several other user-visible attributes:

A name A buffer is identified by its name, which allows it to be selected, destroyed, or
otherwise manipulated.

A collection of modes
The modes present in a buffer alter the set of commands available and otherwise
alter the behavior of the editor. For details see page

A modification flag
This flag is set whenever the text in a buffer is modified. It is often useful to
know whether a buffer has been changed, since if it has it should probably be
saved in its associated file eventually.

A write-protect flag
If this flag is true, then any attempt to modify the buffer will result in an error.

[Command]Select Buffer (bound to C-x b)
This command prompts for the name of a existing buffer and makes that buffer the
current buffer. The newly selected buffer is displayed in the current window, and
editing commands now edit the text in that buffer. Each buffer has its own point,
thus the point will be in the place it was the last time the buffer was selected. When
prompting for the buffer, the default is the buffer that was selected before the current
one.

Chapter 3: Files, Buffers, and Windows 33

[Command]Select Previous Buffer (bound to C-M-l)
[Command]Circulate Buffers (bound to C-M-L)

With no prefix argument, Select Previous Buffer selects the buffer that has been se-
lected most recently, similar to C-x b Return. If given a prefix argument, then it does
the same thing as Circulate Buffers.

Circulate Buffers moves back into successively earlier buffers in the buffer history. If
the previous command was not Circulate Buffers or Select Previous Buffer, then it does
the same thing as Select Previous Buffer, otherwise it moves to the next most recent
buffer. The original buffer at the start of the excursion is made the previous buffer,
so Select Previous Buffer will always take you back to where you started.

These commands are generally used together. Often Select Previous Buffer will take
you where you want to go. If you don’t end up there, then using Circulate Buffers will
do the trick.

[Command]Create Buffer (bound to C-x M-b)
This command is very similar to Select Buffer, but the buffer need not already exist.
If the buffer does not exist, a new empty buffer is created with the specified name.

[Command]Kill Buffer (bound to C-x k)
This command is used to make a buffer go away. There is no way to restore a buffer
that has been accidentally deleted, so the user is given a chance to save the hapless
buffer if it has been modified. This command is poorly named, since it has nothing
to do with killing text.

[Command]List Buffers (bound to C-x C-b)
This command displays a list of all existing buffers in a pop-up window. A "*" is
displayed before the name of each modified buffer. A buffer with no associated file is
represented by the buffer name followed by the number of lines in the buffer. A buffer
with an associated file are is represented by the name and type of the file, a space,
and the device and directory. If the buffer name doesn’t match the associated file,
then the buffer name is also displayed. When given a prefix argument, this command
lists only the modified buffers.

[Command]Buffer Not Modified (bound to M-~)
This command resets the current buffer’s modification flag — it does not save any
changes. This is primarily useful in cases where a user accidentally modifies a buffer
and then undoes the change. Resetting the modified flag indicates that the buffer has
no changes that need to be written out.

[Command]Check Buffer Modified (bound to C-x ~)
This command displays a message indicating whether the current buffer is modified.

[Command]Set Buffer Read-Only
This command changes the flag that allows the current buffer to be modified. If a
buffer is read-only, any attempt to modify it will result in an error. The buffer may
be made writable again by repeating this command.

[Command]Set Buffer Writable
This command ensures the current buffer is modifiable.

Chapter 3: Files, Buffers, and Windows 34

[Command]Insert Buffer
This command prompts for the name of a buffer and inserts its contents at the point,
pushing a buffer mark before inserting. The buffer inserted is unaffected.

[Command]Rename Buffer
This command prompts for a new name for the current buffer, which defaults to a
name derived from the associated filename.

3.3 Files

These commands either read a file into the current buffer or write it out to some file. Various
other bookkeeping operations are performed as well.

[Command]Find File (bound to C-x C-f)
This is the command normally used to get a file into Hemlock. It prompts for the
name of a file, and if that file has already been read in, selects that buffer; otherwise,
it reads file into a new buffer whose name is derived from the name of the file. If the
file does not exist, then the buffer is left empty, and "(New File)" is displayed in the
echo area; the file may then be created by saving the buffer.

The buffer name created is in the form "name type directory". This means that
the filename "/sys/emacs/teco.mid" has "Teco Mid /Sys/Emacs/" as its the corre-
sponding buffer name. The reason for rearranging the fields in this fashion is that it
facilitates recognition since the components most likely to differ are placed first. If
the buffer cannot be created because it already exists, but has another file in it (an
unlikely occurrence), then the user is prompted for the buffer to use, as by Create
Buffer.

Find File takes special action if the file has been modified on disk since it was read
into Hemlock. This usually happens when several people are simultaneously editing
a file, an unhealthy circumstance. If the buffer is unmodified, Find File just asks for
confirmation before reading in the new version. If the buffer is modified, then Find
File beeps and prompts for a single key-event to indicate what action to take. It
recognizes the following key-events:

Return, Space, y
Prompt for a file in which to save the current buffer and then read in the
file found to be modified on disk.

Delete, Backspace, n
Forego reading the file.

r Read the file found to be modified on disk into the buffer containing the
earlier version with modifications. This loses all changes you had in the
buffer.

[Command]Save File (bound to C-x C-s)
This command writes the current buffer out to its associated file and resets the buffer
modification flag. If there is no associated file, then the user is prompted for a file,
which is made the associated file. If the buffer is not modified, then the user is asked
whether to actually write it or not.

Chapter 3: Files, Buffers, and Windows 35

If the file has been modified on disk since the last time it was read, Save File prompts
for confirmation before overwriting the file.

[Command]Save All Files (bound to C-x C-m)
[Command]Save All Files and Exit (bound to C-x M-z)

[Hemlock Variable]Save All Files Confirm (initial value t)
Save All Files does a Save File on all buffers which have an associated file. Save All
Files and Exit does the same thing and then exits Hemlock.

When Save All Files Confirm is true, these commands will ask for confirmation before
saving a file.

[Command]Visit File (bound to C-x C-v)
This command prompts for a file and reads it into the current buffer, setting the
associated filename. Since the old contents of the buffer are destroyed, the user is
given a chance to save the buffer if it is modified. As for Find File, the file need not
actually exist. This command warns if some other buffer also contains the file.

[Command]Write File (bound to C-x C-w) This command prompts for a file
and writes the current buffer out to it, changing the associated filename and resetting
the modification flag. When the buffer’s associated file is specified this command does
the same thing as Save File.

[Command]Backup File
This command is similar to Write File, but it neither sets the associated filename nor
clears the modification flag. This is useful for saving the current state somewhere
else, perhaps on a reliable machine.

Since Backup File doesn’t update the write date for the buffer, Find File and Save File
will get all upset if you back up a buffer on any file that has been read into Hemlock.

[Command]Revert File
[Hemlock Variable]Revert File Confirm (initial value t)

This command replaces the text in the current buffer with the contents of the associ-
ated file or the checkpoint file for that file, whichever is more recent. The point is put
in approximately the same place that it was before the file was read. If the original file
is reverted to, then clear the modified flag, otherwise leave it set. If a prefix argument
is specified, then always revert to the original file, ignoring any checkpoint file.

If the buffer is modified and Revert File Confirm is true, then the user is asked for
confirmation.

[Command]Insert File (bound to C-x C-r)
This command prompts for a file and inserts it at the point, pushing a buffer mark
before inserting.

[Command]Write Region
This command prompts for a file and writes the text in the region out to it.

[Hemlock Variable]Add Newline at EOF on Writing File (initial value
:ask-user)

This variable controls whether some file writing commands add a newline at the end
of the file if the last line is non-empty.

Chapter 3: Files, Buffers, and Windows 36

:ask-user Ask the user whether to add a newline.

t Automatically add a newline and inform the user.

nil Never add a newline and do not ask.

Some programs will lose the text on the last line or get an error when the last line
does not have a newline at the end.

[Hemlock Variable]Keep Backup Files (initial value nil)
Whenever a file is written by Save File and similar commands, the old file is renamed
by appending ".BAK" to the name, ensuring that some version of the file will survive
a system crash during the write. If set to true, this backup file will not deleted even
when the write successfully completes.

3.3.1 Auto Save Mode

Save mode protects against loss of work in system crashes by periodically saving modified
buffers in checkpoint files.

[Command]Auto Save Mode
This command turns on Save mode if it is not on, and turns off when it is on. Save
mode is on by default.

[Hemlock Variable]Auto Save Checkpoint Frequency (initial value 120)
[Hemlock Variable]Auto Save Key Count Threshold (initial value 256)

These variables determine how often modified buffers in Save mode will be check-
pointed. Checkpointing is done after Auto Save Checkpoint Frequency seconds, or
after Auto Save Key Count Threshold keystrokes that modify the buffer (whichever
comes first). Either kind of checkpointing may be disabled by setting the correspond-
ing variable to nil.

[Hemlock Variable]Auto Save Cleanup Checkpoints (initial value t)
If this variable is true, then any checkpoint file for a buffer will be deleted when the
buffer is successfully saved in its associated file.

[Hemlock Variable]Auto Save Filename Pattern (initial value "~A~A.CKP")
[Hemlock Variable]Auto Save Pathname Hook (initial value

make-unique-save-pathname)
These variables determine the naming of checkpoint files. Auto Save Filename Pat-
tern is a format string used to name the checkpoint files for buffers with associated
files. Format is called with two arguments: the directory and file namestrings of the
associated file.

Auto Save Pathname Hook is a function called by Save mode to get a checkpoint
pathname when there is no pathname associated with a buffer. It should take a buffer
as its argument and return either a pathname or nil. If a pathname is returned, then
it is used as the name of the checkpoint file. If the function returns nil, or if the
hook variable is nil, then Save mode is turned off in the buffer. The default value for
this variable returns a pathname in the default directory of the form "save-number",
where number is a number used to make the file unique.

Chapter 3: Files, Buffers, and Windows 37

3.3.2 Filename Defaulting and Merging

When Hemlock prompts for the name of a file, it always offers a default. Except for a few
commands that have their own defaults, filename defaults are computed in a standard way.
If it exists, the associated file for the current buffer is used as the default, otherwise a more
complex mechanism creates a default.

[Hemlock Variable]Pathname Defaults (initial value (pathname "gazonk.del"))
[Hemlock Variable]Last Resort Pathname Defaults Function
[Hemlock Variable]Last Resort Pathname Defaults (initial value (pathname

"gazonk"))
These variables control the computation of default filename defaults when the current
buffer has no associated file.

Pathname Defaults holds a "sticky" filename default. Commands that prompt for files
set this to the file specified, and the value is used as a basis for filename defaults. It
is undesirable to offer the unmodified value as a default, since it is usually the name
of an existing file that we don’t want to overwrite. If the current buffer’s name is
all alphanumeric, then the default is computed by substituting the buffer name for
the the name portion of Pathname Defaults. Otherwise, the default is computed by
calling Last Resort Pathname Defaults Function with the buffer as an argument.

The default value of Last Resort Pathname Defaults Function merges Last Resort Path-
name Defaults with Pathname Defaults. Unlike Pathname Defaults, Last Resort Path-
name Defaults is not modified by file commands, so setting it to a silly name ensures
that real files aren’t inappropriately offered as defaults.

When a default is present in the prompt for a file, Hemlock merges the given input with
the default filename. The semantics of merging, described in the Common Lisp manual, is
somewhat involved, but Hemlock has a few rules it uses:

1. If Hemlock can find the user’s input as a file on the "default:" search list, then it forgoes
merging with the displayed default. Basically, the system favors the files in your current
working directory over those found by merging with the defaults offered in the prompt.

2. Merging comes in two flavors, just merge with the displayed default’s directory or just
merge with the displayed default’s file-namestring. If the user only responds with a
directory specification, without any name or type information, then Hemlock merges
the default’s file-namestring. If the user responds with any name or type information,
then Hemlock only merges with the default’s directory. Specifying relative directories in
this second situation coordinates with the displayed defaults, not the current working
directory.

3.3.3 Type Hooks and File Options

When a file is read either by Find File or Visit File, Hemlock attempts to guess the correct
mode in which to put the buffer, based on the file’s type (the part of the filename after the
last dot). Any default action may be overridden by specifying the mode in the file’s file
options.

The user specifies file options with a special syntax on the first line of a file. If the
first line contains the string "-*-", then Hemlock interprets the text between the first such

Chapter 3: Files, Buffers, and Windows 38

occurrence and the second, which must be contained in one line , as a list of "option: value"
pairs separated by semicolons. The following is a typical example:

;;; -*- Mode: Lisp, Editor; Package: Hemlock -*-

These options are currently defined:

Dictionary
The argument is the filename of a spelling dictionary associated with this file.
The handler for this option merges the argument with the name of this file. See
[Set Buffer Spelling Dictionary], page 45.

Log The argument is the name of the change log file associated with this file (see
page [log-files], page 49). The handler for this option merges the argument with
the name of this file.

Mode The argument is a comma-separated list of the names of modes to turn on in
the buffer that the file is read into.

Package The argument is the name of the package to be used for reading code in the
file. This is only meaningful for Lisp code (see page [lisp-package], page 76.)

Editor The handler for this option ignores its argument and turns on Editor mode (see
Section 9.9.1 [Editor Mode], page 81).

If the option list contains no ":" then the entire string is used as the name of the major
mode for the buffer.

[Command]Process File Options
This command processes the file options in the current buffer as described above.
This is useful when the options have been changed or when a file is created.

3.4 Windows

Hemlock windows display a portion of a buffer’s text. See the section on window groups,
[groups], page 8, for a discussion of managing windows on bitmap device.

[Command]New Window (bound to C-x C-n)
This command prompts users for a new window which they can place anywhere on
the screen. This window is in its own group. This only works with bitmap devices.

[Command]Split Window (bound to C-x 2)
This command splits the current window roughly in half to make two windows. If
the current window is too small to be split, the command signals a user error.

[Command]Next Window (bound to C-x n)
[Command]Previous Window (bound to C-x p)

These commands make the next or previous window the new current window, often
changing the current buffer in the process. When a window is created, it is arbitrarily
made the next window of the current window. The location of the next window is, in
general, unrelated to that of the current window.

39

[Command]Delete Window (bound to C-x C-d, C-x d)
[Command]Delete Next Window (bound to C-x 1)

Delete Window makes the current window go away, making the next window current.
Delete Next Window deletes the next window, leaving the current window unaffected.

On bitmap devices, if there is only one window in the group, either command deletes
the group, making some window in another group the current window. If there are
no other groups, they signal a user error.

[Command]Go to One Window
This command deletes all window groups leaving one with the Default Initial Window
X, Default Initial Window Y, Default Initial Window Width, and Default Initial Window
Height. This remaining window retains the contents of the current window.

[Command]Line to Top of Window (bound to M-!)
[Command]Line to Center of Window (bound to M-#)

Line to Top of Window scrolls the current window up until the current line is at the
top of the screen.

Line to Center of Window attempts to scroll the current window so that the current
line is vertically centered.

[Command]Scroll Next Window Down (bound to C-M-v)
[Command]Scroll Next Window Up (bound to C-M-V)

These commands are the same as Scroll Window Up and Scroll Window Down except
that they operate on the next window.

[Command]Refresh Screen (bound to C-l)
This command refreshes all windows, which is useful if the screen got trashed, cen-
tering the current window about the current line. When the user supplies a positive
argument, it scrolls that line to the top of the window. When the argument is nega-
tive, the line that far from the bottom of the window is moved to the bottom of the
window. In either case when an argument is supplied, this command only refreshes
the current window.

40

4 Editing Documents

Although Hemlock is not dedicated to editing documents as word processing systems are,
it provides a number of commands for this purpose. If Hemlock is used in conjunction with
a text-formatting program, then its lack of complex formatting commands is no liability.

[Command]Text Mode
This commands puts the current buffer into "Text" mode.

4.1 Sentence Commands

A sentence is defined as a sequence of characters ending with a period, question mark or
exclamation point, followed by either two spaces or a newline. A sentence may also be
terminated by the end of a paragraph. Any number of closing delimiters, such as brackets
or quotes, may be between the punctuation and the whitespace. This somewhat complex
definition of a sentence is used so that periods in abbreviations are not misinterpreted as
sentence ends.

[Command]Forward Sentence (bound to M-a)
[Command]Backward Sentence (bound to M-e)

Forward Sentence moves the point forward past the next sentence end. Backward
Sentence moves to the beginning of the current sentence. A prefix argument may be
used as a repeat count.

[Command]Forward Kill Sentence (bound to M-k)
[Command]Backward Kill Sentence (bound to C-x Delete, C-x Backspace)

Forward Kill Sentence kills text from the point through to the end of the current
sentence. Backward Kill Sentence kills from the point to the beginning of the current
sentence. A prefix argument may be used as a repeat count.

[Command]Mark Sentence
This command puts the point at the beginning and the mark at the end of the next
or current sentence.

4.2 Paragraph Commands

A paragraph may be delimited by a blank line or a line beginning with "’" or ".", in which
case the delimiting line is not part of the paragraph. Other characters may be paragraph
delimiters in some modes. A line with at least one leading whitespace character may also
introduce a paragraph and is considered to be part of the paragraph. Any fill-prefix which
is present on a line is disregarded for the purpose of locating a paragraph boundary.

[Command]Forward Paragraph (bound to M-])
[Command]Backward Paragraph (bound to M-[)

Forward Paragraph moves to the end of the current or next paragraph. Backward
Paragraph moves to the beginning of the current or previous paragraph. A prefix
argument may be used as a repeat count.

[Command]Mark Paragraph (bound to M-h)
This command puts the point at the beginning and the mark at the end of the current
paragraph.

Chapter 4: Editing Documents 41

[Hemlock Variable]Paragraph Delimiter Function (initial value
default-para-delim-function)

This variable holds a function that takes a mark as its argument and returns true
when the line it points to should break the paragraph.

4.3 Filling

Filling is a coarse text-formatting process which attempts to make all the lines roughly the
same length, but doesn’t vary the amount of space between words. Editing text may leave
lines with all sorts of strange lengths; filling this text will return it to a moderately aesthetic
form.

[Command]Set Fill Column (bound to C-x f)
This command sets the fill column to the column that the point is currently at, or
the one specified by the absolute value of prefix argument, if it is supplied. The fill
column is the column past which no text is permitted to extend.

[Command]Set Fill Prefix (bound to C-x .)
This command sets the fill prefix to the text from the beginning of the current line
to the point. The fill-prefix is a string which filling commands leave at the beginning
of every line filled. This feature is useful for filling indented text or comments.

[Hemlock Variable]Fill Column (initial value 75)
[Hemlock Variable]Fill Prefix (initial value nil)

These variables hold the value of the fill prefix and fill column, thus setting these
variables will change the way filling is done. If Fill Prefix is nil, then there is no fill
prefix.

[Command]Fill Paragraph (bound to M-q)
This command fills the text in the current or next paragraph. The point is not moved.

[Command]Fill Region (bound to M-g)
This command fills the text in the region. Since filling can mangle a large quantity
of text, this command asks for confirmation before filling a large region (see Region
Query Size.)

[Command]Auto Fill Mode
This command turns on or off the Fill minor mode in the current buffer. When in Fill
mode, Space, Return and Linefeed are rebound to commands that check whether the
point is past the fill column and fill the current line if it is. This enables typing text
without having to break the lines manually.

If a prefix argument is supplied, then instead of toggling, the sign determines whether
Fill mode is turned off; a positive argument argument turns in on, and a negative one
turns it off.

[Command]Auto Fill Linefeed stuff (bound to Linefeed in Fill mode)
[Command]Auto Fill Return stuff (bound to Return in Fill mode)

Auto Fill Linefeed fills the current line if it needs it and then goes to a new line and
inserts the fill prefix. Auto Fill Return is similar, but does not insert the fill prefix on
the new line.

Chapter 4: Editing Documents 42

[Command]Auto Fill Space stuff (bound to Space in Fill mode)
If no prefix argument is supplied, this command inserts a space and fills the current
line if it extends past the fill column. If the argument is zero, then it fills the line
if needed, but does not insert a space. If the argument is positive, then that many
spaces are inserted without filling.

[Hemlock Variable]Auto Fill Space Indent (initial value nil)
This variable determines how lines are broken by the auto fill commands. If it is true,
new lines are created using the Indent New Comment Line command, otherwise the
New Line command is used. Language modes should define this variable to be true so
that auto fill mode can be used on code.

4.4 Scribe Mode

Scribe mode provides a number of facilities useful for editing Scribe documents. It is also
sufficiently parameterizable to be adapted to other similar syntaxes.

[Command]Scribe Mode
This command puts the current buffer in Scribe mode. Except for special Scribe
commands, the only difference between Scribe mode and Text mode is that the rules
for determining paragraph breaks are different. In Scribe mode, paragraphs delimited
by Scribe commands are normally placed on their own line, in addition to the normal
paragraph breaks. The main reason for doing this is that it prevents Fill Paragraph
from mashing these commands into the body of a paragraph.

[Command]Insert Scribe Directive stuff (C-h in Scribe mode)
This command prompts for a key-event to determine which Scribe directive to insert.
Directives are inserted differently depending on their kind:

environment
The current or next paragraph is enclosed in a begin-end pair: @be-
gin[directive] paragraph @end[directive]. If the current region is active,
then this command encloses the region instead of the paragraph it would
otherwise chose.

command The previous word is enclosed by @directive[word]. If the previous word
is already enclosed by a use of the same command, then the beginning of
the command is extended backward by one word.

Typing Home or C- to this command’s prompt will display a list of all the defined
key-events on which it dispatches.

[Command]Add Scribe Directive
This command adds to the database of directives recognized by the Insert Scribe Direc-
tive command. It prompts for the directive’s name, the kind of directive (environment
or command) and the key-event on which to dispatch.

[Command]Add Scribe Paragraph Delimiter
[Command]List Scribe Paragraph Delimiters

Add Scribe Paragraph Delimiter prompts for a string to add to the list of formatting
commands that delimit paragraphs in Scribe mode. If the user supplies a prefix
argument, then this command removes the string as a delimiter.

Chapter 4: Editing Documents 43

List Scribe Paragraph Delimiters displays in a pop-up window the Scribe commands
that delimit paragraphs.

[Hemlock Variable]Escape Character (initial value #\@)
[Hemlock Variable]Close Paren Character (initial value #\)]
[Hemlock Variable]Open Paren Character (initial value #\[)

These variables determine the characters used when a Scribe directive is inserted.

[Command]Scribe Insert Bracket
[Hemlock Variable]Scribe Bracket Table

Scribe Insert Bracket inserts a bracket (>, },), or]), that caused its invocation, and
then shows the matching bracket.

Scribe Bracket Table holds a simple-vector indexed by character codes. If a character
is a bracket, then the entry for its char-code should be the opposite bracket. If a
character is not a bracket, then the entry should be nil.

4.5 Spelling Correction

Hemlock has a spelling correction facility based on the dictionary for the ITS spell program.
This dictionary is fairly small, having only 45,000 word or so, which means it fits on your
disk, but it also means that many reasonably common words are not in the dictionary. A
correct spelling for a misspelled word will be found if the word is in the dictionary and is
only erroneous in that it has a wrong character, a missing character, an extra character or
a transposition of two characters.

[Command]Check Word Spelling (bound to M-$)
This command looks up the previous or current word in the dictionary and attempts
to correct the spelling if it is misspelled. There are four possible results of invoking
this command:

1. This command displays the message "Found it." in the echo area. This means it
found the word in the dictionary exactly as given.

2. This command displays the message "Found it because of word.", where word
is some other word with the same root but a different ending. The word is no
less correct than if the first message is given, but an additional piece of useless
information is supplied to make you feel like you are using a computer.

3. The command prompts with "Correction choice:" in the echo area and lists
possible correct spellings associated with numbers in a pop-up display. Typing
a number selects the corresponding correction, and the command replaces the
erroneous word, preserving case as though by Query Replace. Typing anything
else rejects all the choices.

4. This commands displays the message "Word not found.". The word is not in
the dictionary and possibly spelled correctly anyway. Furthermore, no similarly
spelled words were found to offer as possible corrections. If this happens, it is
worth trying some alternate spellings since one of them might be close enough
to some known words that this command could display.

Chapter 4: Editing Documents 44

[Command]Correct Buffer Spelling
This command scans the entire buffer looking for misspelled words and offers to
correct them. It creates a window into the Spell Corrections buffer, and in this buffer
it maintains a log of any actions taken by the user. When this finds an unknown
word, it prompts for a key-event. The user has the following options:

a Ignore this word. If the command finds the word again, it will prompt
again.

i Insert this word in the dictionary.

c Choose one of the corrections displayed in the Spell Corrections window by
specifying the correction number. If the same misspelling is encountered
again, then the command will make the same correction automatically,
leaving a note in the log window.

r Prompt for a word to use instead of the misspelled one, remembering the
correction as with c.

C-r Go into a recursive edit at the current position, and resume checking
when the recursive edit is exited.

After this command completes, it deletes the log window leaving the buffer around
for future reference.

[Hemlock Variable]Spell Ignore Uppercase (initial value nil)
If this variable is true, then Auto Check Word Spelling and Correct Buffer Spelling will
ignore unknown words that are all uppercase. This is useful for acronyms and cryptic
formatter directives.

[Command]Add Word to Spelling Dictionary (bound to C-x $)
This command adds the previous or current word to the spelling dictionary.

[Command]Remove Word from Spelling Dictionary
This command prompts for a word to remove from the spelling dictionary. Due to
the dictionary representation, removal of a word in the initial spelling dictionary
will remove all words with the same root. The user is asked for confirmation before
removing a root word with valid suffix flags.

[Command]List Incremental Spelling Insertions
This command displays the incremental spelling insertions for the current buffer’s
associated spelling dictionary file.

[Command]Read Spelling Dictionary
This command adds some words from a file to the spelling dictionary. The format of
the file is a list of words, one on each line.

[Command]Save Incremental Spelling Insertions
This command appends incremental dictionary insertions to a file. Any words added
to the dictionary since the last time this was done will be appended to the file. Except
for Augment Spelling Dictionary, all the commands that add words to the dictionary
put their insertions in this list. The file is prompted for unless Set Buffer Spelling
Dictionary has been executed in the buffer.

Chapter 4: Editing Documents 45

[Command]Set Buffer Spelling Dictionary
This command Prompts for the dictionary file to associate with the current buffer.
If the specified dictionary file has not been read for any other buffer, then it is read.
Incremental spelling insertions from this buffer can be appended to this file with Save
Incremental Spelling Insertions. If a buffer has an associated spelling dictionary, then
saving the buffer’s associated file also saves any incremental dictionary insertions.
The "Dictionary: file" file option may also be used to specify the dictionary for a
buffer (see section [file-options], page 37).

[Hemlock Variable]Default User Spelling Dictionary (initial value nil)
This variable holds the pathname of a dictionary to read the first time Spell mode
is entered in a given editing session. When Set Buffer Spelling Dictionary or the
"dictionary" file option is used to specify a dictionary, this default one is read also.
It defaults to nil.

4.5.1 Auto Spell Mode

Auto Spell Mode checks the spelling of each word as it is typed. When an unknown word is
typed the user is notified and allowed to take a number of actions to correct the word.

[Command]Auto Spell Mode
This command turns Spell mode on or off in the current buffer.

[command]Auto Check Word Spelling stuff (bound to word delimiters in
Spell mode)]

[Hemlock Variable]Check Word Spelling Beep (initial value t)
[Hemlock Variable]Correct Unique Spelling Immediately (initial value t)

This command checks the spelling of the word before the point, doing nothing if
the word is in the dictionary. If the word is misspelled but has a known correction
previously supplied by the user, then this command corrects the spelling. If there is
no correction, then this displays a message in the echo area indicating the word is
unknown. An unknown word detected by this command may be corrected using the
Correct Last Misspelled Word command. This command executes in addition to others
bound to the same key; for example, if Fill mode is on, any of its commands bound
to the same keys as this command also run.

If Check Word Spelling Beep is true, then this command will beep when an unknown
word is found. If Correct Unique Spelling Immediately is true, then this command
will immediately attempt to correct any unknown word, automatically making the
correction if there is only one possible.

[Command]Undo Last Spelling Correction (bound to C-x a)
[Hemlock Variable]Spelling Un-Correct Prompt for Insert (initial value nil)

Undo Last Spelling Correction undoes the last incremental spelling correction. The
"correction" is replaced with the old word, and the old word is inserted in the dic-
tionary. Any automatic replacement for the old word is eliminated. When Spelling
Un-Correct Prompt for Insert is true, the user is asked to confirm the insertion into the
dictionary.

46

[Command]Correct Last Misspelled Word (bound to M-:)
This command places the cursor after the last misspelled word detected by the Auto
Check Word Spelling command and then prompts for a key-event on which it dis-
patches:

c Display possible corrections in a pop-up window, and prompt for the one
to make according to the corresponding displayed digit or letter.

any digit Similar to c digit, but immediately makes the correction, dispensing with
display of the possible corrections. This is shorter, but only works when
there are less than ten corrections.

i Insert the word in the dictionary.

r Replace the word with another.

Backspace, Delete, n
Skip this word and try again on the next most recently misspelled word.

C-r Enter a recursive edit at the word, exiting the command when the recur-
sive edit is exited.

Escape Exit and forget about this word.

As in Correct Buffer Spelling, the c and r commands add the correction to the known
corrections.

47

5 Managing Large Systems

Hemlock provides three tools which help to manage large systems:

1. File groups, which provide several commands that operate on all the files in a possibly
large collection, instead of merely on a single buffer.

2. A source comparison facility with semi-automatic merging, which can be used to com-
pare and merge divergent versions of a source file.

3. A change log facility, which maintains a single file containing a record of the edits done
on a system.

5.1 File Groups

A file group is a set of files, upon which various editing operations can be performed. The
files in a group are specified by a file in the following format:

• Any line which begins with one "@" is ignored.

• Any line which does not begin with an "@" is the name of a file in the group.

• A line which begins with "@@" specifies another file having this syntax, which is
recursively examined to find more files in the group.

This syntax is used for historical reasons. Although any number of file groups may be
read into Hemlock, there is only one active group, which is the file group implicitly used
by all of the file group commands. Page [compile-group-command], page 77 describes the
Compile Group command.

[Command]Select Group
This command prompts for the name of a file group to make the active group. If the
name entered is not the name of a group whose definition has been read, then the
user is prompted for the name of a file to read the group definition from. The name
of the default pathname is the name of the group, and the type is "upd".

[Command]Group Query Replace
This command prompts for target and replacement strings and then executes an
interactive string replace on each file in the active group. This reads in each file as if
Find File were used and processes it as if Query Replace were executing.

[Command]Group Replace
This is like Group Query Replace except that it executes a non-interactive replacement,
similar to Replace String.

[Command]Group Search
This command prompts for a string and then searches for it in each file in the active
group. This reads in each file as if Find File were used. When it finds an occurrence,
it prompts the user for a key-event indicating what action to take. The following
commands are defined:

Escape, Space, y
Exit Group Search.

Chapter 5: Managing Large Systems 48

Delete, Backspace, n
Continue searching for the next occurrence of the string.

! Continue the search at the beginning of the next file, skipping the re-
mainder of the current file.

C-r Go into a recursive edit at the current location, and continue the search
when it is exited.

[Hemlock Variable]Group Find File (initial value nil)
The group searching and replacing commands read each file into its own buffer using
Find File. Since this may result in large amounts of memory being consumed by
unwanted buffers, this variable controls whether to delete the buffer after processing
it. When this variable is false, the default, the commands delete the buffer if it did
not previously exist; however, regardless of this variable, if the user leaves the buffer
modified, the commands will not delete it.

[Hemlock Variable]Group Save File Confirm (initial value t)
If this variable is true, the group searching and replacing commands ask for con-
firmation before saving any modified file. The commands attempt to save each file
processed before going on to the next one in the group.

5.2 Source Comparison

These commands can be used to find exactly how the text in two buffers differs, and to
generate a new version that combines features of both versions.

[Hemlock Variable]Source Compare Default Destination (initial value
"Differences")

This is a sticky default buffer name to offer when comparison commands prompt for
a buffer in which to insert the results.

[Command]Compare Buffers
This command prompts for three buffers and then does a buffer comparison. The
first two buffers must exist, as they are the buffers to be compared. The last buffer,
which is created if it does not exist, is the buffer to which output is directed. The
output buffer is selected during the comparison so that its progress can be monitored.
There are various variables that control exactly how the comparison is done.

If a prefix argument is specified, then only only the lines in the the regions of the two
buffers are compared.

[Command]Buffer Changes
This command compares the contents of the current buffer with the disk version of
the associated file. It reads the file into the buffer Buffer Changes File, and generates
the comparison in the buffer Buffer Changes Result. As with Compare Buffers, the
output buffer is displayed in the current window.

[Command]Merge Buffers
This command functions in a very similar fashion to Compare Buffers, the difference
being that a version which is a combination of the two buffers being compared is

Chapter 5: Managing Large Systems 49

generated in the output buffer. This copies text that is identical in the two comparison
buffers to the output buffer. When it encounters a difference, it displays the two
differing sections in the output buffer and prompts the user for a key-event indicating
what action to take. The following commands are defined:

1 Use the first version of the text.

2 Use the second version.

b Insert the string "**** MERGE LOSSAGE ****" followed by both ver-
sions. This is useful if the differing sections are too complex, or it is
unclear which is the correct version. If you cannot make the decision
conveniently at this point, you can later search for the marking string
above.

C-r Do a recursive edit and ask again when the edit is exited.

[Hemlock Variable]Source Compare Ignore Case (initial value nil)
If this variable is non-nil, Compare Buffers and Merge Buffers will do comparisons
case-insensitively.

[Hemlock Variable]Source Compare Ignore Indentation (initial value nil)
If this variable is non-nil, Compare Buffers and Merge Buffers ignore initial whitespace
when comparing lines.

[Hemlock Variable]Source Compare Ignore Extra Newlines (initial value t)
If this variable is true, Compare Buffers and Merge Buffers will treat all groups of
newlines as if they were a single newline.

[Hemlock Variable]Source Compare Number of Lines (initial value 3)
This variable controls the number of lines Compare Buffers and Merge Buffers will
compare when resynchronizing after a difference has been encountered.

5.3 Change Logs

The Hemlock change log facility encourages the recording of changes to a system by making
it easy to do so. The change log is kept in a separate file so that it doesn’t clutter up the
source code. The name of the log for a file is specified by the Log file option (see page
[file-options], page 37.)

[Command]Log Change
[Hemlock Variable]Log Entry Template

Log Change makes a new entry in the change log associated with the file. Any changes
in the current buffer are saved, and the associated log file is read into its own buffer.
The name of the log file is determined by merging the name specified in the Log
option with the current buffer’s file name, so it is not usually necessary to put the
full name there. After inserting a template for the log entry at the beginning of the
buffer, the command enters a recursive edit (see page [recursive-edits], page 16) so
that the text of the entry may be filled in. When the user exits the recursive edit,
the log file is saved.

50

The variable Log Entry Template determines the format of the change log entry. Its
value is a Common Lisp format control string. The format string is passed three
string arguments: the full name of the file, the creation date for the file and the name
of the file author. If the creation date is not available, the current date is used. If the
author is not available then nil is passed. If there is an @ in the template, then it is
deleted and the point is left at that position.

51

6 Special Modes

6.1 Dired Mode

Hemlock provides a directory editing mechanism. The user can flag files and directories
for deletion, undelete flagged files, and with a keystroke read in files and descend into
directories. In some implementations, it also supports copying, renaming, and a simple
wildcard feature.

6.1.1 Inspecting Directories

[Command]Dired (bound to C-x C-M-d)
This command prompts for a directory and fills a buffer with a verbose listing of that
directory. When the prefix argument is supplied, this includes Unix dot files. If a
dired buffer already exists for the directory, this switches to the buffer and makes
sure it displays dot files if appropriate.

[Command]Dired with Pattern (bound to C-x C-M-d)
This command prompts for a directory and a pattern that may contain at most one
wildcard, an asterisk, and it fills a buffer with a verbose listing of the files in the
directory matching the pattern. When the prefix argument is supplied, this includes
Unix dot files. If a dired buffer already exists for this directory, this switches to the
buffer and makes sure it displays dot files if appropriate.

[Command]Dired from Buffer Pathname
This command invokes Dired on the directory name of the current buffer’s pathname.

[Command]Dired Help (bound to Dired: ?)
This command pops up a help window listing the various Dired commands.

[Command]Dired View File (bound to Dired: Space)
[Command]Dired Edit File (bound to Dired: e)

These command read in the file on the current line with the point. If the line de-
scribes a directory instead of a file, then this command effectively invokes Dired on
the specification. This associates the file’s buffer with the Dired buffer.

Dired View File reads in the file as if by View File, and Dired Edit File as if by Find File.

Dired View File always reads into a newly created buffer, warning if the file already
exists in some buffer.

[Command]Dired Up Directory (bound to Dired: ^)
This command invokes Dired on the directory up one level from the current Dired
buffer. This is useful for going backwards after repeatedly invoking Dired View File and
descending into a series of subdirectories. Remember, Dired only generates directory
listings when no buffer contains a dired for the specified directory.

[Command]Dired Update Buffer (bound to Dired: H-u)
This command is useful when the user knows the directory in the current Dired buffer
has changed. Hemlock cannot know the directory structure has changed, but the user
can explicitly update the buffer with this command instead of having to delete it and
invoke Dired again.

Chapter 6: Special Modes 52

[Command]Dired Next File
[Command]Dired Previous File

These commands move to next or previous undeleted file.

6.1.2 Deleting Files

[Command]Dired Delete File and Down Line (bound to Dired: d)
This command marks for deletion the file on the current line with the point and moves
point down a line.

[Command]Dired Delete File with Pattern (bound to Dired: D)
This command prompts for a name pattern that may contain at most one wildcard,
an asterisk, and marks for deletion all the names matching the pattern.

[Command]Dired Delete File (bound to Dired: C-d)
This command marks for deletion the file on the current line with the point without
moving the point.

6.1.3 Undeleting Files

[Command]Dired Undelete File and Down Line (bound to Dired: u)
This command unmarks for deletion the file on the current line with the point and
moves point down a line.

[Command]Dired Undelete File with Pattern (bound to Dired: U)
This command prompts for a name pattern that may contain at most one wildcard,
an asterisk, and unmarks for deletion all the names matching the pattern.

[Command]Dired Undelete File (bound to Dired: C-u)
This command unmarks for deletion the file on the current line with the point without
moving the point.

6.1.4 Expunging and Quitting

[Command]Dired Expunge Files (bound to Dired: !)
[Hemlock Variable]Dired File Expunge Confirm (initial value t)
[Hemlock Variable]Dired Directory Expunge Confirm (initial value t)

This command deletes files marked for deletion, asking the user for confirmation
once for all the files flagged. It recursively deletes any marked directories, asking
the user for confirmation once for all those marked. Dired File Expunge Confirm and
Dired Directory Expunge Confirm when set to nil individually inhibit the confirmation
prompting for the appropriate deleting.

[Command]Dired Quit (bound to Dired: q)
This command expunges any marked files or directories as if by Expunge Dired Files
before deleting the Dired buffer.

Chapter 6: Special Modes 53

6.1.5 Copying Files

[Command]Dired Copy File (bound to Dired: c)
This command prompts for a destination specification and copies the file on the line
with the point. When prompting, the current line’s specification is the default, which
provides some convenience in supplying the destination. The destination is either a
directory specification or a file name, and when it is the former, the source is copied
into the directory under its current file name and extension.

[Command]Dired Copy with Wildcard (bound to Dired: C)
This command prompts for a name pattern that may contain at most one wildcard,
an asterisk, and copies all the names matching the pattern. When prompting for a
destination, this provides the Dired buffer’s directory as a default. The destination
is either a directory specification or a file name with a wildcard. When it is the
former, all the source files are copied into the directory under their current file names
and extensions. When it is the later, each sources file’s substitution for the wildcard
causing it to match the first pattern replaces the wildcard in the destination pattern;
for example, you might want to copy "*.txt" to "*.text".

[Hemlock Variable]Dired Copy File Confirm (initial value t)
This variable controls interaction with the user when it is not obvious what the
copying process should do. This takes one of the following values:

t When the destination specification exists, the copying process stops and
asks the user if it should overwrite the destination.

nil The copying process always copies the source file to the destination spec-
ification without interacting with the user.

:update When the destination specification exists, and its write date is newer than
the source’s write date, then the copying process stops and asks the user
if it should overwrite the destination.

6.1.6 Renaming Files

[Command]Dired Rename File (bound to Dired: r)
Rename the file or directory under the point

[Command]Dired Rename with Wildcard (bound to Dired: R)
Rename files that match a pattern containing ONE wildcard.

[Hemlock Variable]Dired Rename File Confirm (initial value t)
When non-nil, Dired will query before clobbering an existing file.

6.2 View Mode

View mode provides for scrolling through a file read-only, terminating the buffer upon
reaching the end.

[Command]View File
This command reads a file into a new buffer as if by "Visit File", but read-only.
Bindings exist for scrolling and backing up in a single key stroke.

Chapter 6: Special Modes 54

[Command]View Help (bound to View: ?)
This command shows a help message for View mode.

[Command]View Edit File (bound to View: e)
This commands makes a buffer in View mode a normal editing buffer, warning if the
file exists in another buffer simultaneously.

[Command]View Scroll Down (bound to View: Space)
[Hemlock Variable]View Scroll Deleting Buffer (initial value t)

This command scrolls the current window down through its buffer. If the end of the
file is visible, then this deletes the buffer if View Scroll Deleting Buffer is set. If the
buffer is associated with a Dired buffer, this returns there instead of to the previous
buffer.

[Command]View Return (bound to View: ^)
[Command]View Quit (bound to View: q)

These commands invoke a function that returns to the buffer that created the current
buffer in View mode. Sometimes this function does nothing, but it is useful for
returning to Dired buffers and similar Hemlock features.

After invoking the viewing return function if there is one, View Quit deletes the buffer
that is current when the user invokes it.

Also, bound in View mode are the following commands:

backspace, delete
Scrolls the window up.

< Goes to the beginning of the buffer.

> Goes to the end of the buffer.

6.3 Process Mode

Process mode allows the user to execute a Unix process within a Hemlock buffer. These
commands and default bindings cater to running Unix shells in buffers. For example, Stop
Buffer Subprocess is bound to H-z to stop the process you are running in the shell instead
of binding Stop Main Process to this key which would stop the shell itself.

[Command]Shell (bound to C-M-s)
[Hemlock Variable]Shell Utility (initial value "/bin/csh")
[Hemlock Variable]Shell Utility Switches (initial value nil)
[Hemlock Variable]Current Shell
[Hemlock Variable]Ask about Old Shells

This command executes the process determined by the values of (ShellUtility) and
(Shell Utility Switches) in a new buffer named "Shell n"where "n" is some distinguishing
integer.

Current Shell is a Hemlock variable that holds to the current shell buffer. When Shell
is invoked, if there is a Current Shell, the command goes to that buffer.

When there is no Current Shell, but shell buffers do exist, if Ask about Old Shells is
set, the Shell command prompts for one of them, setting Current Shell to the indicated
shell, and goes to the buffer.

Chapter 6: Special Modes 55

Invoking Shell with an argument forces the creation of a new shell buffer.

Shell Utility is the string name of the process to execute.

Shell Utility Switches is a string containing the default command line arguments to
Shell Utility. This is a string since the utility is typically "/bin/csh", and this string
can contain I/O redirection and other shell directives.

[Command]Shell Command Line in Buffer
This command prompts for a buffer and a shell command line. It then runs a shell,
giving it the command line, in the buffer.

[Command]Set Current Shell
This command sets the value of Current Shell.

[Command]Stop Main Process
This command stops the process running in the current buffer by sending a :SIGTSTP
to that process. With an argument, stops the process using :SIGSTOP.

[Command]Continue Main Process
If the process in the current buffer is stopped, this command continues it.

[Command]Kill Main Process
[Hemlock Variable]Kill Process Confirm (initial value t)

This command prompts for confirmation and kills the process running in the current
buffer.

Setting this variable to nil inhibits Hemlock’s prompting for confirmation.

[Command]Stop Buffer Subprocess stuff (bound to H-z in Process mode)
This command stops the foreground subprocess of the process in the current buffer,
similar to the effect of C-Z in a shell.

[Command]Kill Buffer Subprocess
This command kills the foreground subprocess of the process in the current buffer.

[Command]Interrupt Buffer Subprocess stuff (bound to H-c in Process
mode)

This command interrupts the foreground subprocess of the process in the current
buffer, similar to the effect of C-C in a shell.

[Command]Quit Buffer Subprocess (bound to H-\ in Process mode)
This command dumps the core of the foreground subprocess of the processs in the
current buffer, similar to the effect of C-\ in a shell.

[Command]Send EOF to Process stuff (bound to H-d in Process mode)
This command sends the end of file character to the process in the current buffer,
similar to the effect of C-D in a shell.

[Command]Confirm Process Input stuff (bound to Return in Process mode)
This command sends the text the user has inserted at the end of a process buffer
to the process in that buffer. Resulting output is inserted at the end of the process
buffer.

The user may edit process input using commands that are shared with Typescript mode,
see section [typescripts], page 73.

Chapter 6: Special Modes 56

6.4 Bufed Mode

Hemlock provides a mechanism for managing buffers as an itemized list. Bufed supports
conveniently deleting several buffers at once, saving them, going to one, etc., all in a key
stroke.

[Command]Bufed (bound to C-x C-M-b)
This command creates a list of buffers in a buffer supporting operations such as
deletion, saving, and selection. If there already is a Bufed buffer, this just goes to it.

[Command]Bufed Help
This command pops up a display of Bufed help.

[Command]Bufed Delete (bound to Bufed: C-d, C-D, D, d)
[Hemlock Variable]Virtual Buffer Deletion (initial value t)
[Hemlock Variable]Bufed Delete Confirm (initial value t)

Bufed Delete deletes the buffer on the current line.

When Virtual Buffer Deletion is set, this merely flags the buffer for deletion until Bufed
Expunge or Bufed Quit executes.

Whenever these commands actually delete a buffer, if Bufed Delete Confirm is set,
then Hemlock prompts the user for permission; if more than one buffer is flagged for
deletion, this only prompts once. For each modified buffer, Hemlock asks to save the
buffer before deleting it.

[Command]Bufed Undelete (bound to Bufed: U, u)
This command undeletes the buffer on the current line.

[Command]Bufed Expunge (bound to Bufed: !)
This command expunges any buffers marked for deletion regarding Bufed Delete Con-
firm.

[Command]Bufed Quit (bound to Bufed: q)
This command kills the Bufed buffer, expunging any buffers marked for deletion.

[Command]Bufed Goto (bound to Bufed: Space)
This command selects the buffer on the current line, switching to it.

[Command]Bufed Goto and Quit (bound to Bufed: S-leftdown)
This command goes to the buffer under the pointer, quitting Bufed. It supplies a
function for Generic Pointer Up which is a no-op.

[Command]Bufed Save File (bound to Bufed: s)
This command saves the buffer on the current line.

6.5 Completion

This is a minor mode that saves words greater than three characters in length, allowing
later completion of those words. This is very useful for the often long identifiers used in
Lisp programs. As you type a word, such as a Lisp symbol when in Lisp mode, and you
progress to typing the third letter, Hemlock displays a possible completion in the status

Chapter 6: Special Modes 57

line. You can then rotate through the possible completions or type some more letters to
narrow down the possibilities. If you choose a completion, you can also rotate through the
possibilities in the buffer instead of in the status line. Choosing a completion or inserting a
character that delimits words moves the word forward in the ring of possible completions,
so the next time you enter its initial characters, Hemlock will prefer it over less recently
used completions.

[Command]Completion Mode
This command toggles Completion mode in the current buffer.

[Command]Completion Self Insert
This command is like Self Insert, but it also checks for possible completions displaying
any result in the status line. This is bound to most of the key-events with corre-
sponding graphic characters.

[Command]Completion Complete Word (bound to Completion: End)
This command selects the currently displayed completion if there is one, guessing
the case of the inserted text as with Query Replace. Invoking this immediately in
succession rotates through possible completions in the buffer. If there is no currently
displayed completion on a first invocation, this tries to find a completion from text
immediately before the point and displays the completion if found.

[Command]Completion Rotate Completions (bound to Completion: M-End)
This command displays the next possible completion in the status line. If there is no
currently displayed completion, this tries to find a completion from text immediately
before the point and displays the completion if found.

[Command]List Possible Completions
This command lists all the possible completions for the text immediately before the
point in a pop-up display. Sometimes this is more useful than rotating through several
completions to see if what you want is available.

[Hemlock Variable]Completion Bucket Size (initial value 20)
Completions are stored in buckets determined by the first three letters of a word.
This variable limits the number of completions saved for each combination of the first
three letters of a word. If you have many identifier in some module beginning with
the same first three letters, you’ll need increase this variable to accommodate all the
names.

[Command]Save Completions
[Command]Read Completions

[Hemlock Variable]Completion Database Filename (initial value nil)
Save Completions writes the current completions to the file Completion Database File-
name. It writes them, so Read Completions can read them back in preserving the
most-recently-used order. If the user supplies an argument, then this prompts for a
pathname.

Read Completions reads completions saved in Completion Database Filename. It moves
any current completions to a less-recently-used status, and it removes any in a given
bucket that exceed the limit Completion Bucket Size.

Chapter 6: Special Modes 58

[Command]Parse Buffer for Completions
This command passes over the current buffer putting each valid completion word into
the database. This is a good way of picking up many useful completions upon visiting
a new file for which there are no saved completions.

6.6 CAPS-LOCK Mode

CAPS-LOCK is a minor mode in which Hemlock that inserts all alphabetic characters as
uppercase letters.

[Command]Caps Lock Mode
This command toggles CAPS-LOCK mode for the current buffer; it is most useful
when bound to a key, so you can enter and leave CAPS-LOCK mode casually.

[Command]Self Insert Caps Lock
This command inserts the uppercase version of the character corresponding to the
last key-event typed.

6.7 Overwrite Mode

Overwrite mode is a minor mode which is useful for creating figures and tables out of text. In
this mode, typing a key-event with a corresponding graphic character replaces the character
at the point instead of inserting the character. Quoted Insert can be used to insert characters
normally.

[Command]Overwrite Mode
This command turns on Overwrite mode in the current buffer. If it is already on,
then it is turned off. A positive argument turns Overwrite mode on, while zero or a
negative argument turns it off.

[Command]Self Overwrite
This command replaces the next character with the character corresponding to the
key-event used to invoke the command. After replacing the character, this moves
past it. If the next character is a tab, this first expands the tab into the appropriate
number of spaces, replacing just the next space character. At the end of the line, it
inserts the character instead of clobbering the newline.

This is bound to key-events with corresponding graphic characters in Overwrite mode.

[Command]Overwrite Delete Previous Character stuff (bound to Delete
and Backspace in Overwrite mode)

This command replaces the previous character with a space and moves backwards.
This deletes tabs and newlines.

6.8 Word Abbreviation

Word abbreviation provides a way to speed the typing of frequently used words and phrases.
When in Abbrev mode, typing a word delimiter causes the previous word to be replaced with
its expansion if there is one currently defined. The expansion for an abbrev may be any
string, so this mode can be used for abbreviating programming language constructs and

Chapter 6: Special Modes 59

other more obscure uses. For example, Abbrev mode can be used to automatically correct
common spelling mistakes and to enforce consistent capitalization of identifiers in programs.

Abbrev is an abbreviation for abbreviation, which is used for historical reasons. Obviously
the original writer of Abbrev mode hated to type long words and could hardly use Abbrev
mode while writing Abbrev mode.

A word abbrev can be either global or local to a major mode. A global word abbrev
is defined no matter what the current major mode is, while a mode word abbrev is only
defined when its mode is the major mode in the current buffer. Mode word abbrevs can be
used to prevent abbrev expansion in inappropriate contexts.

6.8.1 Basic Commands

[Command]Abbrev Mode
This command turns on Abbrev mode in the current buffer. If Abbrev mode is already
on, it is turned off. Abbrev mode must be on for the automatic expansion of word
abbrevs to occur, but the abbreviation commands are bound globally and may be
used at any time.

[Command]Abbrev Expand Only stuff (bound to word-delimiters in Abbrev
mode)

This is the word abbrev expansion command. If the word before the point is a defined
word abbrev, then it is replaced with its expansion. The replacement is done using
the same case-preserving heuristic as is used by Query Replace. This command is
globally bound to M-Space so that abbrevs can be expanded when Abbrev mode is
off. An undesirable expansion may be inhibited by using C-q to insert the delimiter.

[Command]Inverse Add Global Word Abbrev (bound to C-x -)
[Command]Inverse Add Mode Word Abbrev (bound to C-x C-h, C-x

Backspace)
Inverse Add Global Word Abbrev prompts for a string and makes it the global word
abbrev expansion for the word before the point.

Inverse Add Mode Word Abbrev is identical to Inverse Add Global Word Abbrev except
that it defines an expansion which is local to the current major mode.

[Command]Make Word Abbrev
This command defines an arbitrary word abbreviation. It prompts for the mode,
abbreviation and expansion. If the mode "Global" is specified, then it makes a global
abbrev.

[Command]Add Global Word Abbrev (bound to C-x +)
[Command]Add Mode Word Abbrev (bound to C-x C-a)

Add Global Word Abbrev prompts for a word and defines it to be a global word abbre-
viation. The prefix argument determines which text is used as the expansion:

no prefix argument
The word before the point is used as the expansion of the abbreviation.

zero prefix argument
The text in the region is used as the expansion of the abbreviation.

Chapter 6: Special Modes 60

positive prefix argument
That many words before the point are made the expansion of the abbre-
viation.

negative prefix argument
Do the same thing as Delete Global Word Abbrev instead of defining an
abbreviation.

Add Mode Word Abbrev is identical to Add Global Word Abbrev except that it defines
or deletes mode word abbrevs in the current major mode.

[Command]Word Abbrev Prefix Mark (bound to M-")
This command allows Abbrev Expand Only to recognize abbreviations when they have
prefixes attached. First type the prefix, then use this command. A hyphen (-) will
be inserted in the buffer. Now type the abbreviation and the word delimiter. Abbrev
Expand Only will expand the abbreviation and remove the hyphen.

Note that there is no need for a suffixing command, since Abbrev Expand Only may
be used explicitly by typing M-Space.

[Command]Unexpand Last Word (bound to C-x u)
This command undoes the last word abbrev expansion. If repeated, undoes its own
effect.

6.8.2 Word Abbrev Files

A word abbrev file is a file which holds word abbrev definitions. Word abbrev files allow
abbrevs to be saved so that they may be used across many editing sessions.

[Hemlock Variable]Abbrev Pathname Defaults (initial value (pathname
"abbrev.defns"))

This is sticky default for the following commands. When they prompt for a file to
write, they offer this and set it for the next time one of them executes.

[Command]Read Word Abbrev File
This command reads in a word abbrev file, adding all the definitions to those cur-
rently defined. If a definition in the file is different from the current one, the current
definition is replaced.

[Command]Write Word Abbrev File
This command prompts for a file and writes all currently defined word abbrevs out
to it.

[Command]Append to Word Abbrev File
This command prompts for a word abbrev file and appends any new definitions to
it. An abbrev is new if it has been defined or redefined since the last use of this
command. Definitions made by reading word abbrev files are not considered.

6.8.3 Listing Word Abbrevs

[Command]List Word Abbrevs

Chapter 6: Special Modes 61

[Command]Word Abbrev Apropos
List Word Abbrevs displays a list of each defined word abbrev, with its mode and
expansion.

Word Abbrev Apropos is similar, except that it only displays abbrevs which contain a
specified string, either in the definition, expansion or mode.

6.8.4 Editing Word Abbrevs

Word abbrev definition lists are edited by editing the text representation of the definitions.
Word abbrev files may be edited directly, like any other text file. The set of abbrevs
currently defined in Hemlock may be edited using the commands described in this section.

The text representation of a word abbrev is fairly simple. Each definition begins at the
beginning of a line. Each line has three fields which are separated by ASCII tab characters.
The fields are the abbreviation, the mode of the abbreviation and the expansion. The mode
is represented as the mode name inside of parentheses. If the abbrev is global, then the
mode field is empty. The expansion is represented as a quoted string since it may contain
any character. The string is quoted with double-quotes ("); double-quotes in the expansion
are represented by doubled double-quotes. The expansion may contain newline characters,
in which case the definition will take up more than one line.

[Command]Edit Word Abbrevs
This command inserts the current word abbrev definitions into the Edit Word Abbrevs
buffer and then enters a recursive edit on the buffer. When the recursive edit is exited,
the definitions in the buffer become the new current abbrev definitions.

[Command]Insert Word Abbrevs
This command inserts at the point the text representation of the currently defined
word abbrevs.

[Command]Define Word Abbrevs
This command interprets the text of the current buffer as a word abbrev definition
list, adding all the definitions to those currently defined.

6.8.5 Deleting Word Abbrevs

The user may delete word abbrevs either individually or collectively. Individual abbrev
deletion neutralizes single abbrevs which have outlived their usefulness; collective deletion
provides a clean slate from which to initiate abbrev definitions.

[Command]Delete All Word Abbrevs
This command deletes all word abbrevs which are currently defined.

[Command]Delete Global Word Abbrev
[Command]Delete Mode Word Abbrev

Delete Global Word Abbrev prompts for a word abbreviation and deletes its global
definition. If given a prefix argument, deletes all global abbrev definitions.

Delete Mode Word Abbrev is identical to Delete Global Word Abbrev except that it
deletes definitions in the current major mode.

Chapter 6: Special Modes 62

6.9 Lisp Library

This is an implementation dependent feature. The Lisp library is a collection of local hacks
that users can submit and share that is maintained by the Lisp group. These commands
help peruse the catalog or description files and figure out how to load the entries.

[Command]Lisp Library
This command finds all the library entries and lists them in a buffer. The following
commands describe and load those entries.

[Command]Describe Library Entry (bound to Lisp-Lib: space)
[Command]Describe Pointer Library Entry (bound to Lisp-Lib: leftdown)
[Command]Load Library Entry (bound to Lisp-Lib: rightdown)
[Command]Load Pointer Library Entry (bound to Lisp-Lib: l)
[Command]Editor Load Library Entry
[Command]Editor Load Pointer Library Entry

Load Library Entry and Load Pointer Library Entry load the library entry indicated by
the line on which the point lies or where the user clicked the pointer, respectively.
These load the entry into the current slave Lisp.

Editor Load Library Entry and Editor Load Pointer Library Entry are the same, but they
load the entry into the editor Lisp.

[Command]Exit Lisp Library (bound to Lisp-Lib: q)
This command deletes the Lisp Library buffer.

[Command]Lisp Library Help (bound to Lisp-Lib: ?)
This command pops up a help window listing Lisp-Lib commands.

63

7 Editing Programs

7.1 Comment Manipulation

Hemlock has commenting commands which can be used in almost any language. The behav-
ior of these commands is determined by several Hemlock variables which language modes
should define appropriately.

[Command]Indent for Comment (bound to M-;)
This is the most basic commenting command. If there is already a comment on the
current line, then this moves the point to the start of the comment. If there no
comment, this creates an empty one.

This command normally indents the comment to start at Comment Column. The
comment indents differently in the following cases:

1. If the comment currently starts at the beginning of the line, or if the last character
in the Comment Start appears three times, then the comment remains unmoved.

2. If the last character in the Comment Start appears two times, then the comment
is indented like a line of code.

3. If text on the line prevents the comment occurring in the desired position, this
places the comment at the end of the line, separated from the text by a space.

Although the rules about replication in the comment start are oriented toward Lisp
commenting styles, you can exploit these properties in other languages.

When given a prefix argument, this command indents any existing comment on that
many consecutive lines. This is useful for fixing up the indentation of a group of
comments.

[Command]Indent New Comment Line (bound to M-j, M-Linefeed)
This commend ends the current comment and starts a new comment on a blank line,
indenting the comment the same way that Indent for Comment does. When not in a
comment, this command is the same as Indent New Line.

[Command]Up Comment Line (bound to M-p)
[Command]Down Comment Line (bound to M-n)

These commands are similar to Previous Line or Next Line followed by Indent for
Comment. Any empty comment on the current line is deleted before moving to the
new line.

[Command]Kill Comment (bound to C-M-;)
This command kills any comment on the current line. When given a prefix argument,
it kills comments on that many consecutive lines. Undo will restore the unmodified
text.

[Command]Set Comment Column (bound to C-x ;)
This command sets the comment column to its prefix argument. If used without a
prefix argument, it sets the comment column to the column the point is at.

Chapter 7: Editing Programs 64

[Hemlock Variable]Comment Start (initial value nil)
[Hemlock Variable]Comment End (initial value nil)
[Hemlock Variable]Comment Begin (initial value nil)
[Hemlock Variable]Comment Column (initial value 0)

These variables determine the behavior of the comment commands.

Comment Start
The string which indicates the start of a comment. If this is nil, then
there is no defined comment syntax.

Comment End
The string which ends a comment. If this is nil, then the comment is
terminated by the end of the line.

Comment Begin
The string inserted to begin a new comment.

Comment Column
The column that normal comments start at.

7.2 Indentation

Nearly all programming languages have conventions for indentation or leading whitespace
at the beginning of lines. The Hemlock indentation facility is integrated into the command
set so that it interacts well with other features such as filling and commenting.

[Command]Indent (bound to Tab, C-i)
This command indents the current line. With a prefix argument, indents that many
lines and moves down. Exactly what constitutes indentation depends on the current
mode (see Indent Function).

[Command]Indent New Line (bound to Linefeed)
This command starts a new indented line. Deletes any whitespace before the point
and inserts indentation on a blank line. The effect of this is similar to Return followed
by Tab. The prefix argument is passed to New Line, which is used to insert the blank
line.

[Command]Indent Region (bound to C-M-\)
This command indents every line in the region. It may be undone with Undo.

[Command]Back to Indentation (bound to M-m, C-M-m)
This command moves point to the first non-whitespace character on the current line.

[Command]Delete Indentation (bound to M-^, C-M-^)
Delete Indentation joins the current line with the previous one, deleting excess white-
space. This operation is the inverse of the Linefeed command in most modes. Usually
this leaves one space between the two joined lines, but there are several exceptions.

The non-whitespace immediately surrounding the deleted line break determine the
amount of space inserted.

1. If the preceding character is an "(" or the following character is a ")", then this
inserts no space.

Chapter 7: Editing Programs 65

2. If the preceding character is a newline, then this inserts no space. This will
happen if the previous line was blank.

3. If the preceding character is a sentence terminator, then this inserts two spaces.

When given a prefix argument, this command joins the current and next lines, rather
than the previous and current lines.

[Command]Quote Tab (bound to M-Tab)
This command inserts a tab character.

[Command]Indent Rigidly (bound to C-x Tab, C-x C-i)
This command changes the indentation of all the lines in the region. Each line is
moved to the right by the number of spaces specified by the prefix argument, which
defaults to eight. A negative prefix argument moves lines left.

[Command]Center Line
This indents the current line so that it is centered between the left margin and [Fill
Column], page 41. If a prefix argument is supplied, then it is used as the width instead
of Fill Column.

[Hemlock Variable]Indent Function (initial value tab-to-tab-stop)
The value of this variable determines how indentation is done, and it is a function
which is passed a mark as its argument. The function should indent the line which
the mark points to. The function may move the mark around on the line. The mark
will be :left-inserting. The default simply inserts a tab character at the mark.

[Hemlock Variable]Indent with Tabs (initial value indent-using-tabs)
[Hemlock Variable]Spaces per Tab (initial value 8)

Indent with Tabs holds a function that takes a mark and a number of spaces. The
function will insert a maximum number of tabs and a minimum number of spaces at
mark to move the specified number of columns. The default definition uses Spaces
per Tab to determine the size of a tab. Note, Spaces per Tab is not used everywhere
in Hemlock yet, so changing this variable could have unexpected results.

7.3 Language Modes

Hemlock’s language modes are currently fairly crude, but probably provide better program-
ming support than most non-extensible editors.

[Command]Pascal Mode
This command sets the current buffer’s major mode to Pascal. Pascal mode borrows
parenthesis matching from Scribe mode and indents lines under the previous line.

66

8 Editing Lisp

Hemlock provides a large number of powerful commands for editing Lisp code. It is possible
for a text editor to provide a much higher level of support for editing Lisp than ordinary
programming languages, since its syntax is much simpler.

8.1 Lisp Mode

Lisp mode is a major mode used for editing Lisp code. Although most Lisp specific com-
mands are globally bound, Lisp mode is necessary to enable Lisp indentation, commenting,
and parenthesis-matching. Whenever the user or some Hemlock mechanism turns on Lisp
mode, the mode’s setup includes locally setting Current Package (see section [lisp-package],
page 76) in that buffer if its value is non-existent there; the value used is "USER".

[Command]Lisp Mode
This command sets the major mode of the current buffer to Lisp.

8.2 Form Manipulation

These commands manipulate Lisp forms, the printed representations of Lisp objects. A
form is either an expression balanced with respect to parentheses or an atom such as a
symbol or string.

[Command]Forward Form (bound to C-M-f)
[Command]Backward Form (bound to C-M-b)

Forward Form moves to the end of the current or next form, while Backward Form
moves to the beginning of the current or previous form. A prefix argument is treated
as a repeat count.

[Command]Forward Kill Form (bound to C-M-k)
[Command]Backward Kill Form (bound to C-M-Delete, C-M-Backspace)

Forward Kill Form kills text from the point to the end of the current form. If at the end
of a list, but inside the close parenthesis, then kill the close parenthesis. Backward Kill
Form is the same, except it goes in the other direction. A prefix argument is treated
as a repeat count.

[Command]Mark Form (bound to C-M-@)
This command sets the mark at the end of the current or next form.

[Command]Transpose Forms (bound to C-M-t)
This command transposes the forms before and after the point and moves forward.
A prefix argument is treated as a repeat count. If the prefix argument is negative,
then the point is moved backward after the transposition is done, reversing the effect
of the equivalent positive argument.

[Command]Insert () (bound to M-()
This command inserts an open and a close parenthesis, leaving the point inside the
open parenthesis. If a prefix argument is supplied, then the close parenthesis is put
at the end of the form that many forms from the point.

Chapter 8: Editing Lisp 67

[Command]Extract Form
This command replaces the current containing list with the next form. The entire
affected area is pushed onto the kill ring. If an argument is supplied, that many
upward levels of list nesting is replaced by the next form. This is similar to Extract
List, but this command is more generally useful since it works on any kind of form; it
is also more intuitive since it operates on the next form as many Lisp mode commands
do.

8.3 List Manipulation

List commands are similar to form commands, but they only pay attention to lists, ignoring
any atomic objects that may appear. These commands are useful because they can skip
over many symbols and move up and down in the list structure.

[Command]Forward List (bound to C-M-n)
[Command]Backward List (bound to C-M-p)

Forward List moves the point to immediately after the end of the next list at the
current level of list structure. If there is not another list at the current level, then
it moves up past the end of the containing list. Backward List is identical, except
that it moves backward and leaves the point at the beginning of the list. The prefix
argument is used as a repeat count.

[Command]Forward Up List bindC-M-)
[Command]Backward Up List (bound to C-M-(, C-M-u)

Forward Up List moves to after the end of the enclosing list. Backward Up List moves
to the beginning. The prefix argument is used as a repeat count.

[Command]Down List (bound to C-M-d)
This command moves to just after the beginning of the next list. The prefix argument
is used as a repeat count.

[Command]Extract List (bound to C-M-x)
This command "extracts" the current list from the list which contains it. The outer
list is deleted, leaving behind the current list. The entire affected area is pushed on
the kill ring, so that this possibly catastrophic operation can be undone. The prefix
argument is used as a repeat count.

8.4 Defun Manipulation

A defun is a list whose open parenthesis is against the left margin. It is called this because
an occurrence of the defun top level form usually satisfies this definition, but other top level
forms such as a defstruct and defmacro work just as well.

[Command]End of Defun (bound to C-M-e, C-M-])
[Command]Beginning of Defun (bound to C-M-a, C-M-[)

End of Defun moves to the end of the current or next defun. Beginning of Defun moves
to the beginning of the current or previous defun. End of Defun will not work if the
parentheses are not balanced.

Chapter 8: Editing Lisp 68

[Command]Mark Defun (bound to C-M-h)
This command puts the point at the beginning and the mark at the end of the current
or next defun.

8.5 Indentation

One of the most important features provided by Lisp mode is automatic indentation of Lisp
code. Since unindented Lisp is unreadable, poorly indented Lisp is hard to manage, and
inconsistently indented Lisp is subtly misleading. See section [indentation], page 64, for a
description of the general-purpose indentation commands. Lisp mode uses these indentation
rules:

• If in a semicolon (;) comment, then use the standard comment indentation rules. See
page [comment-indentation], page 63.

• If in a quoted string, then indent to the column one greater than the column containing
the opening double quote. This is exactly what you want in function documentation
strings and wrapping error strings.

• If there is no enclosing list, then use no indentation.

• If enclosing list resembles a call to a known macro or special-form, then the first few
arguments are given greater indentation and the first body form is indented two spaces.
If the first special argument is on the same line as the beginning of the form, then
following special arguments will be indented to the start of the first special argument,
otherwise all special arguments are indented four spaces.

• If the previous form starts on its own line, then the indentation is copied from that
form. This rule allows the default indentation to be overridden: once a form has been
manually indented to the user’s satisfaction, subsequent forms will be indented in the
same way.

• If the enclosing list has some arguments on the same line as the form start, then
subsequent arguments will be indented to the start of the first argument.

• If the enclosing list has no argument on the same line as the form start, then arguments
will be indented one space.

[Command]Indent Form (bound to C-M-q)
This command indents all the lines in the current form, leaving the point unmoved.
This is undo-able.

[Command]Fill Lisp Comment Paragraph (bound to M-q in Lisp mode)
[Hemlock Variable]Fill Lisp Comment Paragraph Confirm (initial value t)

This fills a flushleft or indented Lisp comment. This also fills Lisp string literals using
the proper indentation as a filling prefix. When invoked outside of a comment or
string, this tries to fill all contiguous lines beginning with the same initial, non-empty
blankspace. When filling a comment, the current line is used to determine a fill prefix
by taking all the initial whitespace on the line, the semicolons, and any whitespace
following the semicolons.

When invoked outside of a comment or string, this command prompts for confirmation
before filling. It is useful to use this for filling long export lists or other indented text
or symbols, but since this is a less common use, this command tries to make sure that

Chapter 8: Editing Lisp 69

is what you wanted. Setting Fill Lisp Comment Paragraph Confirm to nil inhibits the
confirmation prompt.

[Command]Defindent (bound to C-M-#)
This command prompts for the number of special arguments to associate with the
symbol at the beginning of the current or containing list.

[Hemlock Variable]Indent Defanything (initial value 2)
This is the number of special arguments implicitly assumed to be supplied in calls to
functions whose names begin with "def". If set to nil, this feature is disabled.

[Command]Move Over) (bound to M-))
This command moves past the next close parenthesis and then does the equivalent of
Indent New Line.

8.6 Parenthesis Matching

Lisp mode is parenthesis matching. Two different styles of parenthesis matching are sup-
ported: highlighting and pausing.

[Hemlock Variable]Highlight Open Parens (initial value t)
[Hemlock Variable]Open Paren Highlighting Font (initial value nil)

When Highlight Open Parens is true, and a close paren is immediately before the point,
then Hemlock displays the matching open paren in Open Paren Highlighting Font.

Open Paren Highlighting Font is the string name of the font used for paren highlighting.
Only the "(" character is used in this font. If null, then a reasonable default is chosen.
The highlighting font is read at initialization time, so this variable must be set before
the editor is first entered to have any effect.

[Command]Lisp Insert) (bound to) in Lisp mode)
[Hemlock Variable]Paren Pause Period (initial value 0.5)

This command inserts a close parenthesis and then attempts to display the matching
open parenthesis by placing the cursor on top of it for Paren Pause Period seconds. If
there is no matching parenthesis then beep. If the matching parenthesis is off the top
of the screen, then the line on which it appears is displayed in the echo area. Paren
pausing may be disabled by setting Paren Pause Period to nil.

The initial values shown for Highlight Open Parens and Paren Pause Period are only
approximately correct. Since paren highlighting is only meaningful in Lisp mode, Highlight
Open Parens is false globally, and has a mode-local value of t in Lisp mode. It it redundant
to do both kinds of paren matching, so there is also a binding of Paren Pause Period to nil
in Lisp mode.

Paren highlighting is only supported under X windows, so the above defaults are condi-
tional on the device type. If Hemlock is started on a terminal, the initialization code makes
Lisp mode bindings of nil and 0.5 for Highlight Open Parens and Paren Pause Period. Since
these alternate default bindings are made at initialization time, the only way to affect them
is to use the after-editor-initializations macro.

Chapter 8: Editing Lisp 70

8.7 Parsing Lisp

Lisp mode has a fairly complete knowledge of Lisp syntax, but since it does not use the
reader, and must work incrementally, it can be confused by legal constructs. Lisp mode
totally ignores the read-table, so user-defined read macros have no effect on the editor. In
some cases, the values the Lisp Syntax character attribute can be changed to get a similar
effect.

Lisp commands consistently treat semicolon (;) style comments as whitespace when
parsing, so a Lisp command used in a comment will affect the next (or previous) form
outside of the comment. Since #| ... |# comments are not recognized, they can used to
comment out code, while still allowing Lisp editing commands to be used.

Strings are parsed similarly to symbols. When within a string, the next form is after the
end of the string, and the previous form is the beginning of the string.

[Hemlock Variable]Defun Parse Goal (initial value 2)
[Hemlock Variable]Maximum Lines Parsed (initial value 500)
[Hemlock Variable]Minimum Lines Parsed (initial value 50)

In order to save time, Lisp mode does not parse the entire buffer every time a Lisp
command is used. Instead, it uses a heuristic to guess the region of the buffer that is
likely to be interesting. These variables control the heuristic.

Normally, parsing begins and ends on defun boundaries (an open parenthesis at the
beginning of a line). Defun Parse Goal specifies the number of defuns before and after
the point to parse. If this parses fewer lines than Minimum Lines Parsed, then parsing
continues until this lower limit is reached. If we cannot find enough defuns within
Maximum Lines Parsed lines then we stop on the farthest defun found, or at the point
where we stopped if no defuns were found.

When the heuristic fails, and does not parse enough of the buffer, then commands
usually act as though a syntax error was detected. If the parse starts in a bad place
(such as in the middle of a string), then Lisp commands will be totally confused.
Such problems can usually be eliminated by increasing the values of some of these
variables.

[Hemlock Variable]Parse Start Function (initial value start-of-parse-block)
[Hemlock Variable]Parse End Function (initial value end-of-parse-block)

These variables determine the region of the buffer parsed. The values are functions
that take a mark and move it to the start or end of the parse region. The default
values implement the heuristic described above.

71

9 Interacting With Lisp

Lisp encourages highly interactive programming environments by requiring decisions about
object type and function definition to be postponed until run time. Hemlock supports
interactive programming in Lisp by providing incremental redefinition and environment
examination commands. Hemlock also uses Unix TCP sockets to support multiple Lisp
processes, each of which may be on any machine.

9.1 Eval Servers

Hemlock runs in the editor process and interacts with other Lisp processes called eval
servers. A user’s Lisp program normally runs in an eval server process. The separation
between editor and eval server has several advantages:

• The editor is protected from any bad things which may happen while debugging a Lisp
program.

• Editing may occur while running a Lisp program.

• The eval server may be on a different machine, removing the load from the editing
machine.

• Multiple eval servers allow the use of several distinct Lisp environments.

Instead of providing an interface to a single Lisp environment, Hemlock coordinates
multiple Lisp environments.

9.1.1 The Current Eval Server

Although Hemlock can be connected to several eval servers simultaneously, one eval server
is designated as the current eval server. This is the eval server used to handle evaluation
and compilation requests. Eval servers are referred to by name so that there is a convenient
way to discriminate between servers when the editor is connected to more than one. The
current eval server is normally globally specified, but it may also be shadowed locally in
specific buffers.

[Command]Set Eval Server
[Command]Set Buffer Eval Server
[Command]Current Eval Server

Set Eval Server prompts for the name of an eval server and makes it the the current
eval server. Set Buffer Eval Server is the same except that is sets the eval server for the
current buffer only. Current Eval Server displays the name of the current eval server in
the echo area, taking any buffer eval server into consideration. See also [Set Compile
Server], page 77.

9.1.2 Slaves

For now, all eval servers are slaves. A slave is a Lisp process that uses a typescript (see
page [typescripts], page 73) to run its top-level read-eval-print loop in a Hemlock buffer.
We refer to the buffer that a slave uses for I/O as its interactive or slave buffer. The name
of the interactive buffer is the same as the eval server’s name.

Hemlock creates a background buffer for each eval server. The background buffer’s name
is Background name, where name is the name of the eval server. Slaves direct compiler
warning output to the background buffer to avoid cluttering up the interactive buffer.

Chapter 9: Interacting With Lisp 72

Hemlock locally sets Current Eval Server in interactive and background buffers to their
associated slave. When in a slave or background buffer, eval server requests will go to the
associated slave, regardless of the global value of Current Eval Server.

[Command]Select Slave (bound to C-M-c)
This command changes the current buffer to the current eval server’s interactive
buffer. If the current eval server is not a slave, then it beeps. If there is no current
eval server, then this creates a slave (see section [slave-creation], page 72). If a prefix
argument is supplied, then this creates a new slave regardless of whether there is a
current eval server. This command is the standard way to create a slave.

The slave buffer is a typescript (see page [typescripts], page 73) the slave uses for its
top-level read-eval-print loop.

[Command]Select Background (bound to C-M-C)
This command changes the current buffer to the current eval server’s background
buffer. If there is no current eval server, then it beeps.

9.1.3 Slave Creation and Destruction

When Hemlock first starts up, there is no current eval server. If there is no a current eval
server, commands that need to use the current eval server will create a slave as the current
eval server.

If an eval server’s Lisp process terminates, then we say the eval server is dead. Hemlock
displays a message in the echo area, interactive, and background buffers whenever an eval
server dies. If the user deletes an interactive or background buffer, the associated eval server
effectively becomes impotent, but Hemlock does not try to kill the process. If a command
attempts to use a dead eval server, then the command will beep and display a message.

[Hemlock Variable]Confirm Slave Creation (initial value t)
If this variable is true, then Hemlock always prompts the user for confirmation before
creating a slave.

[Hemlock Variable]Ask About Old Servers (initial value t)
If this variable is true, and some slave already exists, Hemlock prompts the user for
the name of an existing server when there is no current server, instead of creating a
new one.

[Command]Editor Server Name
This command echos the editor server’s name, the machine and port of the editor,
which is suitable for use with the Lisp processes -slave switch. See section [slave-
switch], page 83.

[Command]Accept Slave Connections
This command cause Hemlock to accept slave connections, and it displays the editor
server’s name, which is suitable for use with the Lisp processes -slave switch. See
section [slave-switch], page 83. Supplying an argument causes this command to inhibit
slave connections.

Chapter 9: Interacting With Lisp 73

[Hemlock Variable]Slave Utility (initial value "/usr/misc/.lisp/bin/lisp")
[Hemlock Variable]Slave Utility Switches

A slave is started by running the program Slave Utility Name with arguments specified
by the list of strings Slave Utility Switches. This is useful primarily when running
customized Lisp systems. For example, setting Slave Utility Switches to ("-core"
"my.core") will cause "/usr/hqb/my.core" to be used instead of the default core
image.

The -slave switch and the editor name are always supplied as arguments, and should
remain unspecified in Slave Utility Switches.

[Command]Kill Slave
[Command]Kill Slave and Buffers

Kill Slave prompts for a slave name, aborts any operations in the slave, tells the slave
to quit, and shuts down the connection to the specified eval server. This makes no
attempt to assure the eval server actually dies.

Kill Slave and Buffers is the same as Kill Slave, but it also deletes the interactive and
background buffers.

9.1.4 Eval Server Operations

Hemlock handles requests for compilation or evaluation by queuing an operation on the
current eval server. Any number of operations may be queued, but each eval server can only
service one operation at a time. Information about the progress of operations is displayed
in the echo area.

[Command]Abort Operations (bound to C-c a)
This command aborts all operations on the current eval server, either queued or in
progress. Any operations already in the Aborted state will be flushed.

[Command]List Operations (bound to C-c l)
This command lists all operations which have not yet completed. Along with a
description of the operation, the state and eval server is displayed. The following
states are used:

Unsent The operation is in local queue in the editor, and hasn’t been sent yet.

Pending The operation has been sent, but has not yet started execution.

Running The operation is currently being processed.

Aborted The operation has been aborted, but the eval server has not yet indicated
termination.

9.2 Typescripts

Both slave buffers and background buffers are typescripts. The typescript protocol allows
other processes to do stream-oriented interaction in a Hemlock buffer similar to that of a
terminal. When there is a typescript in a buffer, the Typescriptminor mode is present. Some
of the commands described in this section are also used by Eval mode (page [eval-mode],
page 82.)

Chapter 9: Interacting With Lisp 74

Typescripts are simple to use. Hemlock inserts output from the process into the buffer.
To give the process input, use normal editing to insert the input at the end of the buffer,
and then type Return to confirm sending the input to the process.

[Command]Confirm Typescript Input (bound to Return in Typescript mode)]
[Hemlock Variable]Unwedge Interactive Input Confirm (initial value t)

This command sends text that has been inserted at the end of the current buffer
to the process reading on the buffer’s typescript. Before sending the text, Hemlock
moves the point to the end of the buffer and inserts a newline.

Input may be edited as much as is desired before it is confirmed; the result of editing
input after it has been confirmed is unpredictable. For this reason, it is desirable
to postpone confirming of input until it is actually complete. The Indent New Line
command is often useful for inserting newlines without confirming the input.

If the process reading on the buffer’s typescript is not waiting for input, then the text
is queued instead of being sent immediately. Any number of inputs may be typed
ahead in this fashion. Hemlock makes sure that the inputs and outputs get interleaved
correctly so that when all input has been read, the buffer looks the same as it would
have if the input had not been typed ahead.

If the buffer’s point is before the start of the input area, then various actions can
occur. When set, Unwedge Interactive Input Confirm causes Hemlock to ask the user
if it should fix the input buffer which typically results in ignoring any current input
and refreshing the input area at the end of the buffer. This also has the effect of
throwing the slave Lisp to top level, which aborts any pending operations or queued
input. This is the only way to be sure the user is cleanly set up again after messing
up the input region. When this is nil, Hemlock simply beeps and tells the user in the
Echo Area that the input area is invalid.

[Command]Kill Interactive Input (bound to M-i in Typescript and Eval
modes)

This command kills any input that would have been confirmed by Return.

[Command]Next Interactive Input (bound to M-n in Typescript and Eval
modes)]

[Command]Previous Interactive Input (bound to M-p in Typescript and Eval
modes)]

[Command]Search Previous Interactive Input (bound to M-P in Typescript
and Eval modes)

[Hemlock Variable]Interactive History Length (initial value 10)
[Hemlock Variable]Minimum Interactive Input Length (initial value 2)

Hemlock maintains a history of interactive inputs. Next Interactive Input and Previous
Interactive Input step forward and backward in the history, inserting the current entry
in the buffer. The prefix argument is used as a repeat count.

Search Previous Interactive Input searches backward through the interactive history
using the current input as a search string. Consecutive invocations repeat the previous
search.

Chapter 9: Interacting With Lisp 75

Interactive History Length determines the number of entries with which Hemlock creates
the buffer-specific histories. Hemlock only adds an input region to the history if its
number of characters exceeds Minimum Interactive Input Length.

[Command]Reenter Interactive Input (bound to C-Return in Typescript and
Eval modes)]

This copies to the end of the buffer the form to the left of the buffer’s point. When
the current region is active, this copies it instead. This is sometimes easier to use to
get a previous input that is either so far back that it has fallen off the history or is
visible and more readily yanked than gotten with successive invocations of the history
commands.

[Command]Interactive Beginning of Line (bound to C-a in Typescript and
Eval modes)]

This command is identical to Beginning of Line unless there is no prefix argument and
the point is on the same line as the start of the current input; then it moves to the
beginning of the input. This is useful since it skips over any prompt which may be
present.

[Hemlock Variable]Input Wait Alarm (initial value :loud-message)
[Hemlock Variable]Slave GC Alarm (initial value :message)

Input Wait Alarm determines what action to take when a slave Lisp goes into an input
wait on a typescript that isn’t currently displayed in any window. Slave GC Alarm
determines what action to take when a slave notifies that it is GC’ing.

The following are legal values:

:loud-message
Beep and display a message in the echo area indicating which buffer is
waiting for input.

:message Display a message, but don’t beep.

nil Don’t do anything.

[Command]Typescript Slave BREAK (bound to Typescript: H-b)
[Command]Typescript Slave to Top Level (bound to Typescript: H-g)
[Command]Typescript Slave Status (bound to Typescript: H-s)

Some typescripts have associated information which these commands access allowing
Hemlock to control the process which uses the typescript.

Typescript Slave BREAK puts the current process in a break loop so that you can
be debug it. This is similar in effect to an interrupt signal (^C or ^\ in the editor
process).

Typescript Slave to Top Level causes the current process to throw to the top-level
read-eval-print loop. This is similar in effect to a quit signal (^\).

Typescript Slave Status causes the current process to print status information on error-
output:

; Used 0:06:03, 3851 faults. In: SYSTEM:SERVE-EVENT

The message displays the process run-time, the total number of page faults and the
name of the currently running function. This command is useful for determining
whether the slave is in an infinite loop, waiting for input, or whatever.

Chapter 9: Interacting With Lisp 76

9.3 The Current Package

The current package is the package which Lisp interaction commands use. The current
package is specified on a per-buffer basis, and defaults to "USER". If the current package
does not exist in the eval server, then it is created. If evaluation is being done in the editor
process and the current package doesn’t exist, then the value of *package* is used. The
current package is displayed in the modeline (see section [modelines], page 7.) Normally
the package for each file is specified using the Package file option (see page [file-options],
page 37.)

When in a slave buffer, the current package is controlled by the value of package in that
Lisp process. Modeline display of the current package is inhibited in this case.

[Command]Set Buffer Package
This command prompts for the name of a package to make the local package in the
current buffer. If the current buffer is a slave, background, or eval buffer, then this
sets the current package in the associated eval server or editor Lisp. When in an
interactive buffer, do not use in-package; use this command instead.

9.4 Compiling and Evaluating Lisp Code

These commands can greatly speed up the edit/debug cycle since they enable incremental
reevaluation or recompilation of changed code, avoiding the need to compile and load an
entire file.

[Command]Evaluate Expression (bound to M-Escape)
This command prompts for an expression and prints the result of its evaluation in the
echo area. If an error happens during evaluation, the evaluation is simply aborted,
instead of going into the debugger. This command doesn’t return until the evaluation
is complete.

[Command]Evaluate Defun (bound to C-x C-e)
[Command]Evaluate Region
[Command]Evaluate Buffer

These commands evaluate text out of the current buffer, reading the current defun,
the region and the entire buffer, respectively. The result of the evaluation of each form
is displayed in the echo area. If the region is active, then Evaluate Defun evaluates
the current region, just like Evaluate Region.

[Command]Macroexpand Expression (bound to C-M)
This command shows the macroexpansion of the next expression in the null envi-
ronment in a pop-up window. With an argument, it uses macroexpand instead of
macroexpand-1.

[Command]Re-evaluate Defvar
This command is similar to Evaluate Defun. It is used for force the re-evaluation of a
defvar init form. If the current top-level form is a defvar, then it does a makunbound
on the variable, and evaluates the form.

Chapter 9: Interacting With Lisp 77

[Command]Compile Defun (bound to C-x C-c)
[Command]Compile Region

These commands compile the text in the current defun and the region, respectively. If
the region is active, then Compile Defun compiles the current region, just like Compile
Region.

[Command]Load File
[Hemlock Variable]Load Pathname Defaults (initial value nil)

This command prompts for a file and loads it into the current eval server using
load. Load Pathname Defaults contains the default pathname for this command. This
variable is set to the file loaded; if it is nil, then there is no default. This command
also uses the Remote Compile File variable.

9.5 Compiling Files

These commands are used to compile source (".lisp") files, producing binary (".fasl") output
files. Note that unlike the other compiling and evalating commands, this does not have the
effect of placing the definitions in the environment; to do so, the binary file must be loaded.

[Command]Compile Buffer File (bound to C-x c)
[Hemlock Variable]Compile Buffer File Confirm (initial value t)

This command asks for confirmation, then saves the current buffer (when modified)
and compiles the associated file. The confirmation prompt indicates intent to save
and compile or just compile. If the buffer wasn’t modified, and a comparison of
the write dates for the source and corresponding binary (".fasl") file suggests that
recompilation is unnecessary, the confirmation also indicates this. A prefix argument
overrides this test and forces recompilation. Since there is a complete log of output
in the background buffer, the creation of the normal error output (".err") file is
inhibited.

Setting Compile Buffer File Confirm to nil inhibits confirmation, except when the binary
is up to date and a prefix argument is not supplied.

[Command]Compile File
This command prompts for a file and compiles that file, providing a convenient way
to compile a file that isn’t in any buffer. Unlike Compile Buffer File, this command
doesn’t do any consistency checks such as checking whether the source is in a modified
buffer or the binary is up to date.

[Command]Compile Group
[Command]List Compile Group

Compile Group does a Save All Files and then compiles every ".lisp" file for which the
corresponding ".fasl" file is older or nonexistent. The files are compiled in the order
in which they appear in the group definition. A prefix argument forces compilation
of all ".lisp" files.

List Compile Group lists any files that would be compiled by Compile Group. All
Modified files are saved before checking to generate a consistent list.

[Command]Set Compile Server
[Command]Set Buffer Compile Server

Chapter 9: Interacting With Lisp 78

[Command]Current Compile Server
These commands are analogous to Set Eval Server, [Set Buffer Eval Server], page 71
and Current Eval Server, but they determine the eval server used for file compilation
requests. If the user specifies a compile server, then the file compilation commands
send compilation requests to that server instead of the current eval server.

Having a separate compile server makes it easy to do compilations in the background
while continuing to interact with your eval server and editor. The compile server
can also run on a remote machine relieving your active development machine of the
compilation effort.

[Command]Next Compiler Error (bound to H-n)
[Command]Previous Compiler Error (bound to H-p)

These commands provides a convenient way to inspect compiler errors. First it splits
the current window if there is only one window present. Hemlock positions the current
point in the first window at the erroneous source code for the next (or previous) error.
Then in the second window, it displays the error beginning at the top of the window.
Given an argument, this command skips that many errors.

[Command]Flush Compiler Error Information
This command relieves the current eval server of all infomation about errors encoun-
tered while compiling. This is convenient if you have been compiling a lot, but you
were ignoring errors and warnings. You don’t want to step through all the old errors,
so you can use this command immediately before compiling a file whose errors you
intend to edit.

[Hemlock Variable]Remote Compile File (initial value nil)
When true, this variable causes file compilations to be done using the RFS remote file
system mechanism by prepending "/../host" to the file being compiled. This allows
the compile server to be run on a different machine, but requires that the source be
world readable. If false, commands use source filenames directly. Do NOT use this
to compile files in AFS.

9.6 Querying the Environment

These commands are useful for obtaining various random information from the Lisp envi-
ronment.

[Command]Describe Function Call (bound to C-M-A)
[Command]Describe Symbol (bound to C-M-S)

Describe Function Call uses the current eval server to describe the symbol found at
the head of the currently enclosing list, displaying the output in a pop-up window.
Describe Symbol is the same except that it describes the symbol at or before the point.
These commands are primarily useful for finding the documentation for functions and
variables. If there is no currently valid eval server, then this command uses the editor
Lisp’s environment instead of trying to spawn a slave.

Chapter 9: Interacting With Lisp 79

9.7 Editing Definitions

The Lisp compiler annotates each compiled function object with the source file that the
function was originally defined from. The definition editing commands use this information
to locate and edit the source for functions defined in the environment.

[Command]Edit Definition
[Command]Goto Definition (bound to C-M-F)
[Command]Edit Command Definition

Edit Definition prompts for the name of a function, and then uses the current eval
server to find out in which file the function is defined. If something other than defun
or defmacro defined the function, then this simply reads in the file, without trying
to find its definition point within the file. If the function is uncompiled, then this
looks for it in the current buffer. If there is no currently valid eval server, then this
command uses the editor Lisp’s environment instead of trying to spawn a slave.

Goto Definition edits the definition of the symbol at the beginning of the current list.

Edit Command Definition edits the definition of a Hemlock command. By default,
this command does a keyword prompt for the command name (as in an extended
command). If a prefix argument is specified, then instead prompt for a key and edit
the definition of the command bound to that key.

[Command]Add Definition Directory Translation
[Command]Delete Definition Directory Translation

The defining file is recorded as an absolute pathname. The definition editing com-
mands have a directory translation mechanism that allow the sources to be found
when they are not in the location where compilation was originally done. Add Def-
inition Directory Translation prompts for two directory namestrings and causes the
first to be mapped to the second. Longer (more specific) directory specifications are
matched before shorter (more general) ones.

Delete Definition Directory Translation prompts for a directory namestring and deletes
it from the directory translation table.

[Hemlock Variable]Editor Definition Info (initial value nil)
When this variable is true, the editor Lisp is used to determine definition editing
information, otherwise the current eval server is used. This variable is true in Eval
and Editor modes.

9.8 Debugging

These commands manipulate the slave when it is in the debugger and provide source editing
based on the debugger’s current frame. These all affect the Current Eval Server.

9.8.1 Changing Frames

[Command]Debug Down (bound to C-M-H-d)
This command moves down one debugger frame.

[Command]Debug Up (bound to C-M-H-u)
This command moves up one debugger frame.

Chapter 9: Interacting With Lisp 80

[Command]Debug Top (bound to C-M-H-t)
This command moves to the top of the debugging stack.

[Command]Debug Bottom (bound to C-M-H-b)
This command moves to the bottom of the debugging stack.

[Command]Debug Frame (bound to C-M-H-f)
This command moves to the absolute debugger frame number indicated by the prefix
argument.

9.8.2 Getting out of the Debugger

[Command]Debug Quit (bound to C-M-H-q)
This command throws to top level out of the debugger in the Current Eval Server.

[Command]Debug Go (bound to C-M-H-g)
This command tries the continue restart in the Current Eval Server.

[Command]Debug Abort (bound to C-M-H-a)
This command executes the ABORT restart in the Current Eval Server.

[Command]Debug Restart (bound to C-M-H-r)
This command executes the restart indicated by the prefix argument in the Current
Eval Server. The debugger enumerates the restart cases upon entering it.

9.8.3 Getting Information

[Command]Debug Help (bound to C-M-H-h)
This command in prints the debugger’s help text.

[Command]Debug Error (bound to C-M-H-e)
This command prints the error condition and restart cases displayed upon entering
the debugger.

[Command]Debug Backtrace (bound to C-M-H-B)
This command executes the debugger’s backtrace command.

[Command]Debug Print (bound to C-M-H-p)
This command prints the debugger’s current frame in the same fashion as the frame
motion commands.

[Command]Debug Verbose Print (bound to C-M-H-P)
This command prints the debugger’s current frame without elipsis.

[Command]Debug Source (bound to C-M-H-s)
This command prints the source form for the debugger’s current frame.

[Command]Debug Verbose Source
This command prints the source form for the debugger’s current frame with surround-
ing forms for context.

[Command]Debug List Locals (bound to C-M-H-l)
This prints the local variables for the debugger’s current frame.

Chapter 9: Interacting With Lisp 81

9.8.4 Editing Sources

[Command]Debug Edit Source (bound to C-M-H-S)
This command attempts to place you at the source location of the debugger’s current
frame. Not all debugger frames represent function’s that were compiled with the
appropriate debug-info policy. This beeps with a message if it is unsuccessful.

9.8.5 Miscellaneous

[Command]Debug Flush Errors (bound to C-M-H-F)
This command toggles whether the debugger ignores errors or recursively enters itself.

9.9 Manipulating the Editor Process

When developing Hemlock customizations, it is useful to be able to manipulate the editor
Lisp environment from Hemlock.

[Command]Editor Describe (bound to Home t, C- t)
This command prompts for an expression, and then evaluates and describes it in the
editor process.

[Command]Room
Call the room function in the editor process, displaying information about allocated
storage in a pop-up window.

[Command]Editor Load File
This command is analogous to [Load File], page 77, but loads the file into the editor
process.

9.9.1 Editor Mode

When Editor mode is on, alternate versions of the Lisp interaction commands are bound in
place of the eval server based commands. These commands manipulate the editor process
instead of the current eval server. Turning on editor mode in a buffer allows incremental
development of code within the running editor.

[Command]Editor Mode
This command turns on Editor minor mode in the current buffer. If it is already on,
it is turned off. Editor mode may also be turned on using the Mode file option (see
page [file-options], page 37.)

[Command]Editor Compile Defun (bound to C-x C-c in Editor mode)
[Command]Editor Compile Region
[Command]Editor Evaluate Buffer
[Command]Editor Evaluate Defun (bound to C-x C-e in Editor mode)]
[Command]Editor Evaluate Region
[Command]Editor Macroexpand Expression (bound to Editor: C-M)
[Command]Editor Re-evaluate Defvar
[Command]Editor Describe Function Call (bound to C-M-A in Editor

mode)]

Chapter 9: Interacting With Lisp 82

[Command]Editor Describe Symbol (bound to C-M-S in Editor mode)]
These commands are similar to the standard commands, but modify or examine the
Lisp process that Hemlock is running in. Terminal I/O is done on the initial window
for the editor’s Lisp process. Output is directed to a pop-up window or the editor’s
window instead of to the background buffer.

[Command]Editor Compile Buffer File
[Command]Editor Compile File
[Command]Editor Compile Group

In addition to compiling in the editor process, these commands differ from the eval
server versions in that they direct output to the the Compiler Warnings buffer.

[Command]Editor Evaluate Expression (bound to M-Escape in Editor mode
and C-M-Escape)]

This command prompts for an expression and evaluates it in the editor process. The
results of the evaluation are displayed in the echo area.

9.9.2 Eval Mode

Eval mode is a minor mode that simulates a read eval print loop running within the editor
process. Since Lisp program development is usually done in a separate eval server process
(see page [eval-servers], page 71), Eval mode is used primarily for debugging code that must
run in the editor process. Eval mode shares some commands with Typescript mode: see
section [typescripts], page 73.

Evalmode doesn’t completely support terminal I/O: it binds standard-output to a stream
that inserts into the buffer and standard-input to a stream that signals an error for all
operations. Hemlock cannot correctly support the interactive evaluation of forms that read
from the Eval interactive buffer.

[Command]Select Eval Buffer
This command changes to the Eval buffer, creating one if it doesn’t already exist.
The Eval buffer is created with Lisp as the major mode and Eval and Editor as minor
modes.

[Command]Confirm Eval Input (bound to Return in Eval mode)]
This command evaluates all the forms between the end of the last output and the end
of the buffer, inserting the results of their evaluation in the buffer. This beeps if the
form is incomplete. Use Linefeed to insert line breaks in the middle of a form.

This command uses Unwedge Interactive Input Confirm in the same way Confirm Inter-
active Input does.

[Command]Abort Eval Input (bound to M-i in Eval mode)]
This command moves the the end of the buffer and prompts, ignoring any input
already typed in.

9.9.3 Error Handling

When an error happens inside of Hemlock, Hemlock will trap the error and display the error
message in the echo area, possibly along with the "Internal error:" prefix. If you want to

Chapter 9: Interacting With Lisp 83

debug the error, type ?. This causes the prompt "Debug:" to appear in the echo area. The
following commands are recognized:

d Enter a break-loop so that you can use the Lisp debugger. Proceeding with
"go" will reenter Hemlock and give the "Debug:" prompt again.

e Display the original error message in a pop-up window.

b Show a stack backtrace in a pop-up window.

q, Escape Quit from this error to the nearest command loop.

r Display a list of the restart cases and prompt for the number of a restart-case
with which to continue. Restarting may result in prompting in the window in
which Lisp started.

Only errors within the editor process are handled in this way. Errors during eval server
operations are handled using normal terminal I/O on a typescript in the eval server’s slave
buffer or background buffer (see page [operations], page 73). Errors due to interaction in a
slave buffer will cause the debugger to be entered in the slave buffer.

9.10 Command Line Switches

Two command line switches control the initialization of editor and eval servers for a Lisp
process:

-edit This switch starts up Hemlock. If there is a non-switch command line word
immediately following the program name, then the system interprets it as a file
to edit. For example, given

lisp file.txt -edit

Lisp will go immediately into Hemlock finding the file file.txt.

-slave [name]
This switch causes the Lisp process to become a slave of the editor process
name. An editor Lisp determines name when it allows connections from slaves.
Once the editor chooses a name, it keeps the same name until the editor’s
Lisp process terminates. Since the editor can automatically create slaves on
its own machine, this switch is useful primarily for creating slaves that run on
a different machine. hqb’s machine is ME.CS.CMU.EDU, and he wants want
to run a slave on SLAVE.CS.CMU.EDU, then he should use the Accept Slave
Connections command, telnet to the machine, and invoke Lisp supplying -slave
and the editor’s name. The command displays the editor’s name.

For these switches to work, the core file must already have hemlock loaded. It does
not work to load hemlock into the current lisp. Thus, use require :hemlock and then
save-lisp to save a lisp core (or executable) that includes hemlock. Then the command-
line switches will be available.

84

10 The Mail Interface

10.1 Introduction to Mail in Hemlock

Hemlock provides an electronic mail handling facility via an interface to the public domain
Rand MH Message Handling System. This chapter assumes that the user is familiar with
the basic features and operation of MH, but it attempts to make allowances for beginners.
Later sections of this chapter discuss setting up MH, profile components and special files for
formatting outgoing mail headers, and backing up protected mail directories on a worksta-
tion. For more information on MH, see the Rand MH Message Handling System Tutorial
and the Rand MH Message Handling System Manual.

The Hemlock interface to MH provides a means for generating header (scan) lines for
messages and displaying these headers in a Headers buffer. This allows the user to operate
on the current message as indicated by the position of the cursor in the Headers buffer. The
user can read, reply to, forward, refile, or perform various other operations on the current
message. A user typically generates a Headers buffer with the commands Message Headers
or Incorporate and Read New Mail, and multiple such buffers may exist simultaneously.

Reading a message places its text in a Message buffer. In a manner similar to a Headers
buffer, this allows the user to operate on that message. Most Headers buffer commands
behave the same in a Message buffer. For example, the Reply to Message command has the
same effect in both Headers mode and Message mode. It creates a Draft buffer and makes
it the current buffer so that the user may type a reply to the current message.

The Send Message command originates outgoing mail. It generates a Draft buffer in
which the user composes a mail message. Each Draft buffer has an associated pathname,
so the user can save the buffer to a file as necessary. Invoking Send Message in a Headers
or Message buffer associates the Draft buffer with a Message buffer. This allows the user
to easily refer to the message being replied to with the command Goto Message Buffer.
After the user composes a draft message, he can deliver the message by invoking the Deliver
Message command in the Draft buffer (which deletes both the this buffer and any associated
Message buffer), or he can delay this action. Invoking Deliver Message when not in a Draft
buffer causes it to prompt for a draft message ID, allowing previously composed and saved
messages to be delivered (even across distinct Lisp invocations).

The Hemlock mail system provides a mechanism for virtual message deletion. That is,
the Delete Message command does not immediately delete a message but merely flags the
message for future deletion. This allows the user to undelete the messages with the Undelete
Message command. The Expunge Messages command actually removes messages flagged for
deletion. After expunging a deleted message, Undelete Messages can no longer retrieve it.
Commands that read messages by sequencing through a Headers buffer typically ignore
those marked for deletion, which makes for more fluid reading if a first pass has been made
to delete uninteresting messages.

After handling messages in a Headers buffer, there may be messages flagged for deletion
and possibly multiple Message buffers lying around. There is a variety of commands that
help terminate a mail session. Expunge Messages will flush the messages to be deleted,
leaving the buffer in an updated state. Delete Headers Buffer and Message Buffers will delete
the Headers buffer and its corresponding Message buffers. Quit Headers is a combination of

Chapter 10: The Mail Interface 85

these two commands in that it first expunges messages and then deletes all the appropriate
buffers.

One does not have to operate only on messages represented in a Headers buffer. This
is merely the nominal mode of interaction. There are commands that prompt for a folder,
an MH message specification (for example, "1 3 6 last", "1-3 5 6", "all", "unseen"), and
possibly a pick expression. Pick expressions allow messages to be selected based on header
field pattern matching, body text searching, and date comparisons; these can be specified
using either a Unix shell-like/switch notation or a Lisp syntax, according to one’s preference.
See section [scanning], page 90, for more details.

A mail-drop is a file where a Unix-based mail system stores all messages a user receives.
The user’s mail handling program then fetches these from the mail-drop, allowing the user to
operate on them. Traditionally one locates his mail-drop and mail directory on a mainframe
machine because the information on mainframes is backed up on magnetic tape at least once
per day. Since Hemlock only runs under CMU Common Lisp on workstations, and one’s
mail directory is not usually world writable, it is not possible to adhere to a standard
arrangement. Since MH provides for a remote mail-drop, and CMU’s Remote File System
has a feature allowing authentication across a local area network, one can use Hemlock to
fetch his mail from a mainframe mail-drop (where it is backed up before Hemlock grabs
it) and store it on his workstation. Reading mail on a workstation is often much faster
and more comfortable because typically it is a single user machine. Section [backing-up],
page 88, describes how to back up one’s mail directory from a workstation to a mainframe.

10.2 Constraints on MH to use Hemlock’s Interface

There are a couple constaints placed on the user of the Hemlock interface to MH. The first
is that there must be a draft folder specified in one’s MH profile to use any command that
sends mail. Also, to read new mail, there must be an Unseen-Sequence: component in one’s
MH profile. The default MH profile does not specify these components, so they must be
added by the user. The next section of this chapter describes how to add these components.
Another constraint is that Hemlock requires its own scan line format to display headers lines
in a Headers buffer. See the description of the variable MH Scan Line Form for details.

10.3 Setting up MH

Get an MH default profile and mail directory by executing the MH folder utility in a Unix
shell. When it asks if it should make the "inbox" folder, answer "yes". This creates a file
called ".mh profile" in the user’s home directory and a directory named "Mail".

Edit the ".mh profile" file inserting two additional lines. To send mail in Hemlock, the
user must indicate a draft folder by adding a Draft-Folder: line with a draft folder name —
"drafts" is a common name:

Draft-Folder: drafts

Since the mail-drop exists on a remote machine, the following line must also be added:

MailDrop: /../<hostname>/usr/spool/mail/<username>

Since the user’s mail-drop is on a separate machine from his mail directory (and where
the user runs Hemlock), it is necessary to issue the following command from the Unix shell
(on the workstation). This only needs to be done once.

Chapter 10: The Mail Interface 86

/usr/cs/etc/rfslink -host <hostname> /usr/spool/mail/<username>

Note that <hostname> is not a full ARPANET domain-style name. Use an abbreviated
CMU host name (for example, "spice" not "spice.cs.cmu.edu").

10.4 Profile Components and Customized Files

10.4.1 Profile Components

The following are short descriptions about profile components that are either necessary to
using Hemlock’s interface to MH or convenient for using MH in general:

Path: This specifies the user’s mail directory. It can be either a full pathname or a
pathname relative to the user’s home directory. This component is necessary
for using MH.

MailDrop: This is used to specify one’s remote mail-drop. It is necessary for Hemlock
only when using a mail-drop other than "/usr/spool/mail/<user>" on the local
machine.

Folder-Protect:, Msg-Protect:
These are set to 700 and 600 respectively to keep others from reading one’s
mail. At one time the default values were set for public visibility of mail folders.
Though this is no longer true, these can be set for certainty. The 700 protection
allows only user read, write, and execute (list access for directories), and 600
allows only user read and write. These are not necessary for either MH or the
Hemlock interface.

Unseen-Sequence:
When mail is incorporated, new messages are added to this sequence, and as
these messages are read they are removed from it. This allows the user at any
time to invoke an MH program on all the unseen messges of a folder easily. An
example definition is:

Unseen-Sequence: unseen

Specifying an unseen-sequence is necessary to use Hemlock’s interface to MH.

Alternate-Mailboxes:
This is not necessary for either MH or the Hemlock interface. This component
tells MH which addresses that it should recognize as the user. This is used for
scan output formatting when the mail was sent by the user. It is also used by
repl when it sets up headers to know who the user is for inclusion or exclusion
from cc: lists. This is case sensitive and takes wildcards. One example is:

Alternate-Mailboxes: *FRED*, *Fred*, *fred*

Draft-Folder:
This makes multiple draft creation possible and trivial to use. Just supply a
folder name (for example, "drafts"). Specifying a draft-folder is necessary to
use Hemlock’s interface to MH.

repl: -cc all -nocc me -fcc out-copy
This tells the repl utility to include everyone but the user in the cc: list when
replying to mail. It also makes repl keep an copy of the message the user sends.

Chapter 10: The Mail Interface 87

This is mentioned because one probably wants to reply to everyone receiving a
piece of mail except oneself. Unlike other utilities that send mail, repl stores
personal copies of outgoing mail based on a command line switch. Other MH
utilities use different mechanisms. This line is not necessary to use either MH
or the Hemlock interface.

rmmproc: /usr/cs/bin/rm
This is not necessary to use Hemlock’s interface to MH, but due to Hemlock’s
virtual message deletion feature, this causes messages to be deleted from folder
directories in a cleaner fashion when they actually get removed. Note that
setting this makes rmm more treacherous if used in the Unix shell.

10.4.2 Components Files

Components files are templates for outgoing mail header fields that specify position and
sometimes values for specified fields. Example files are shown for each one discussed here.
These should exist in the user’s mail directory.

For originating mail there is a components file named "components", and it is used by
the MH utility comp. An example follows:

To:

cc:

fcc: out-copy

Subject:

This example file differs from the default by including the fcc: line. This causes MH to
keep a copy of the outgoing draft message. Also, though it isn’t visible here, the To:, cc:,
and Subject: lines have a space at the end.

The "forwcomps" components file is a template for the header fields of any forwarded
message. Though it may be different, our example is the same as the previous one. These
are distinct files for MH’s purposes, and it is more flexible since the user might not want to
keep copies of forwarded messages.

The "replcomps" components file is a template for the header fields of any draft message
composed when replying to a message. An example follows:

%(lit)%(formataddr %<{reply-to}%|%<{from}%|%{sender}%>%>)\

%<(nonnull)%(void(width))%(putaddr To:)\n%>\

%(lit)%(formataddr{to})%(formataddr{cc})%(formataddr(me))\

%(formataddr{resent-to})\

%<(nonnull)%(void(width))%(putaddr cc:)\n%>\

%<{fcc}Fcc: %{fcc}\n%>\

%<{subject}Subject: Re: %{subject}\n%>\

%<{date}In-reply-to: Your message of \

%<(nodate{date})%{date}%|%(tws{date})%>.%<{message-id}

%{message-id}%>\n%>\

This example file differs from the default by including the resent-to: field (in addition
to the to: and cc: fields) of the message being replied to in the cc: field of the draft. This
is necessary for replying to all recipients of a distributed message. Keeping a copy of the

Chapter 10: The Mail Interface 88

outgoing draft message works a little differently with reply components. MH expects a
switch which the user can put in his profile (see section [Profile], page 86, of this chapter),
and using the MH formatting language, this file tests for the fcc value as does the standard
file.

10.5 Backing up the Mail Directory

The easiest method of backing up a protected mail directory is to copy it into an Andrew
File System (AFS) directory since these are backed up daily as with mainframes. The only
problem with this is that the file servers may be down when one wants to copy his mail
directory since, at the time of this writing, these servers are still under active development;
however, they are becoming more robust daily. One can read about the current AFS status
in the file /../fac/usr/gripe/doc/vice/status.

Using AFS, one could keep his actual mail directory (not a copy thereof) in his AFS
home directory which eliminates the issue of backing it up. This is additionally beneficial if
the user does not use the same workstation everyday (that is, he does not have his own but
shares project owned machines). Two problems with this arrangement result from the AFS
being a distributed file system. Besides the chance that the server will be down when the
user wants to read mail, performance degrades since messages must always be referenced
across the local area network.

Facilities’ official mechanism for backing up protected directories is called sup. This is
awkward to use and hard to set up, but a subsection here describes a particular arrangement
suitable for the user’s mail directory.

10.5.1 Andrew File System

If the user choses to use AFS, he should get copies of Getting Started with the Andrew File
System and Protecting AFS files and directories. To use AFS, send mail to Gripe requesting
an account. When Gripe replies with a password, change it to be the same as the account’s
password on the workstation. This causes the user to be authenticated into AFS when he
logs into his workstation (that is, he is automatically logged into his AFS account). To
change the password, first log into the AFS account:

log <AFS userid>

Then issue the vpasswd command.

All of the example command lines in this section assume the user has /usr/misc/bin on
his Unix shell PATH environment variable.

10.5.1.1 Copy into AFS:

Make an AFS directory to copy into:

mkdir /afs/cs.cmu.edu/user/<AFS userid>/mail-backup

This will be readable by everyone, so protect it with the following:

fs sa /afs/cs.cmu.edu/user/<AFSuserid>/mail-backup System:AnyUser none

Once the AFS account and directory to backup into have been established, the user
needs a means to recursively copy his mail directory updating only those file that have
changed and deleting those that no longer exist. To do this, issue the following command:

copy -2 -v -R <mail directory> <AFS backup directory>

Chapter 10: The Mail Interface 89

Do not terminate either of these directory specifications with a /. The -v switch causes
copy to output a line for copy and deletion, so this may be eliminated if the user desires.

10.5.1.2 Mail Directory Lives in AFS:

Assuming the AFS account has been established, and the user has followed the directions
in [setting-up], page 85, now make an AFS directory to serve as the mail directory:

mkdir /afs/cs.cmu.edu/user/<AFS userid>/Mail

This will be readable by everyone, so protect it with the following:

fs sa /afs/cs.cmu.edu/user/<AFSuserid>/Mail System:AnyUser none

Tell MH where the mail directory is by modifying the profile’s ".mh profile" (see section
[setting-up], page 85) Path: component (see [Profile], page 86):

Path: /afs/cs.cmu.edu/user/<AFS userid>/Mail

10.5.2 Sup to a Mainframe

To use sup the user must set up a directory named "sup" on the workstation in the user’s
home directory. This contains different directories for the various trees that will be backed
up, so there will be a "Mail" directory. This directory will contain two files: "crypt" and
"list". The "crypt" file contains one line, terminated with a new line, that contains a
single word — an encryption key. "list" contains one line, terminated with a new line, that
contains two words — "upgrade Mail".

On the user’s mainframe, a file must be created that will be supplied to the sup program.
It should contain the following line to backup the mail directory:

Mail delete host=<workstation> hostbase=/usr/<user> base=/usr/<user> \

crypt=WordInCryptFile login=<user> password=LoginPasswordOnWorkstation

Warning: This file contains the user’s password and should be protected appropriately.

The following Unix shell command issued on the mainframe will backup the mail direc-
tory:

sup <name of the sup file used in previous paragraph>

As a specific example, assume user "fred" has a workstation called "fred", and his
mainframe is the "gpa" machine where he has another user account named "fred".
The password on his workstation is "purple". On his workstation, he creates the
directory "/usr/fred/sup/Mail/" with the two files "crypt" and "list". The file
"/usr/fred/sup/Mail/crypt" contains only the encryption key:

steppenwolf

The file "/usr/fred/sup/Mail/list" contains the command to upgrade the "Mail" direc-
tory:

upgrade Mail

On the "gpa" machine, the file "/usr/fred/supfile" contains the following line:

Mail delete host=fred hostbase=/usr/fred base=/usr/fred \

crypt=steppenwolf login=fred password=purple

This file is protected on "gpa", so others cannot see fred’s password on his workstation.

On the gpa-vax, issuing

sup /usr/fred/supfile

Chapter 10: The Mail Interface 90

to the Unix shell will update the MH mail directory from fred’s workstation deleting any
files that exist on the gpa that do not exist on the workstation.

For a more complete description of the features of sup, see the UNIX Workstation
Owner’s Guide and The SUP Software Upgrade Protocol.

10.6 Introduction to Commands and Variables

Unless otherwise specified, any command which prompts for a folder name will offer the
user a default. Usually this is MH’s idea of the current folder, but sometimes it is the folder
name associated with the current buffer if there is one. When prompting for a message, any
valid MH message expression may be entered (for example, "1 3 6", "1-3 5 6", "unseen",
"all"). Unless otherwise specified, a default will be offered (usually the current message).

Some commands mention specific MH utilities, so the user knows how the Hemlock
command affects the state of MH and what profile components and special formatting files
will be used. Hemlock runs the MH utility programs from a directory indicated by the
following variable:

[Hemlock Variable]MH Utility Pathname (initial value "/usr/misc/.mh/bin/")
MH utility names are merged with this pathname to find the executable files.

10.7 Scanning and Picking Messages

As pointed out in the introduction of this chapter, users typically generate headers or scan
listings of messages with Message Headers, using commands that operate on the messages
represented by the headers. Pick Headers (bound to h in Headers mode) can be used to
narrow down (or further select over) the headers in the buffer.

A pick expression may be entered using either a Lisp syntax or a Unix shell-like/switch
notation as described in the MH documentation. The Lisp syntax is as follows:

<exp> ::= {(not <exp>) | (and <exp>*) | (or <exp>*)

| (cc <pattern>) | (date <pattern>)

| (from <pattern>) | (search <pattern>)

| (subject <pattern>) | (to <pattern>)

| (-- <component> <pattern>)

| (before <date>) | (after <date>)

| (datefield <field>)}

<pattern> ::= {<string> | <symbol>}

<component> ::= {<string> | <symbol>}

<date> ::= {<string> | <symbol> | <number>}

<field> ::= <string>

Anywhere the user enters a <symbol>, its symbol name is used as a string. Since Hemlock
reads the expression without evaluating it, single quotes ("’") are unnecessary. From the
MH documentation,

Chapter 10: The Mail Interface 91

• A <pattern> is a Unix ed regular expression. When using a string to input these,
remember that \ is an escape character in Common Lisp.

• A <component> is a header field name (for example, reply-to or resent-to).

• A <date> is an 822 -style specification, a day of the week, "today", "yesterday", "to-
morrow", or a number indicating n days ago. The 822 standard is basically:

dd mmm yy hh:mm:ss zzz

which is a two digit day, three letter month (first letter capitalized), two digit year, two
digit hour (00 through 23), two digit minute, two digit second (this is optional), and a
three letter zone (all capitalized). For example:

21 Mar 88 16:00 EST

• A <field> is an alternate Date: field to use with (before <date>) and (after <date>)
such as BB-Posted: or Delivery-Date:.

Using (before <date>) and (after <date>) causes date field parsing, while (date <pat-
tern>) does string pattern matching.

Since a <pattern> may be a symbol or string, it should be noted that the symbol name
is probably all uppercase characters, and MH will match these only against upper case. MH
will match lowercase characters against lower and upper case. Some examples are:

;;; All messages to Gripe.

(to "gripe")

;;; All messages to Gripe or about Hemlock.

(or (to "gripe") (subject "hemlock"))

;;; All messages to Gripe with "Hemlock" in the body.

(and (to "gripe") (search "hemlock"))

Matching of <component> fields is case sensitive, so this example will pick over all
messages that have been replied to.

(or (-- "replied" "") (-- "Replied" ""))

[Hemlock Variable]MH Scan Line Form (initial value "library:mh-scan")
This is a pathname of a file containing an MH format expression used for header lines.

The header line format must display the message ID as the first non-whitespace item.
If the user uses the virtual message deletion feature which is on by default, there must
be a space three characters to the right of the message ID. This location is used on
header lines to note that a message is flagged for deletion. The second space after the
message ID is used for notating answered or replied-to messages.

[Command]Message Headers (bound to C-x r)
This command prompts for a folder, message (defaulting to "all"), and an optional
pick expression. Typically this will simply be used to generate headers for an entire
folder or sequence, and the pick expression will not be used. A new Headers buffer is
made, and the output of scan on the messages indicated is inserted into the buffer.
The current window is used, the buffer’s point is moved to the first header, and the
Headers buffer becomes current. The current value of the Hemlock Fill Column variable
is supplied to scan as the -width switch. The buffer name is set to a string of the

Chapter 10: The Mail Interface 92

form "Headers <folder> <msgs> <pick expression>", so the modeline will show what
is in the buffer. If no pick expression was supplied, none will be shown in the buffer’s
name. As described in the introduction to this section, the expression may be entered
using either a Lisp syntax or a Unix shell-like/switch notation.

[Hemlock Variable]MH Lisp Expression (initial value t)
When this is set, MH expression prompts are read in a Lisp syntax. Otherwise,
the input is of the form of a Unix shell-like/switch notation as described in the MH
documentation.

[Command]Pick Headers stuff (bound to h in Headers mode)
This command is only valid in a Headers buffer. It prompts for a pick expression,
and the messages shown in the buffer are supplied to pick with the expression. The
resulting messages are scan’ed, deleting the previous contents of the buffer. The
current value of Fill Column is used for the scan’ing. The buffer’s point is moved to
the first header. The buffer’s name is set to a string of the form "Headers <folder>
<msgs picked over> <pick expression>", so the modeline will show what is in the buffer.
As described in the introduction to this section, the expression may be entered using
either a Lisp syntax or a Unix shell-like/switch notation.

[Command]Headers Help (bound to Headers: ?)
This command displays documentation on Headers mode.

10.8 Reading New Mail

[Command]Incorporate and Read New Mail stuff (bound to C-x i globally
and i in Headers and Message modes)

This command incorporates new mail into New Mail Folder and creates a Headers
buffer with the new messages. An unseen-sequence must be define in the user’s MH
profile to use this. Any headers generated due to Unseen Headers Message Spec are
inserted as well. The buffer’s point is positioned on the headers line representing the
first unseen message of the newly incorporated mail.

[Command]Incorporate New Mail
This command incorporates new mail into New Mail Folder, displaying inc output in
a pop-up window. This is similar to Incorporate and Read New Mail except that no
Headers buffer is generated.

[Hemlock Variable]New Mail Folder (initial value "+inbox")
This is the folder into which MH incorporates new mail.

[Hemlock Variable]Unseen Headers Message Spec (initial value nil)
This is an MH message specification that is suitable for any message prompt. When
incorporating new mail and after expunging messages, Hemlock uses this specification
in addition to the unseen-sequence name that is taken from the user’s MH profile to
generate headers for the unseen Headers buffer. This value is a string.

[Hemlock Variable]Incorporate New Mail Hook (initial value nil)
This is a list of functions which are invoked immediately after new mail is incorpo-
rated. The functions should take no arguments.

Chapter 10: The Mail Interface 93

[Hemlock Variable]Store Password (initial value nil)
When this is set, the user is only prompted once for his password, and the password
is stored for future use.

[Hemlock Variable]Authenticate Incorporation (initial value nil)
[Hemlock Variable]Authentication User Name (initial value nil)

When Authenticate Incorporation is set, incorporating new mail prompts for a password
to access a remote mail-drop.

When incorporating new mail accesses a remote mail-drop, Authentication User Name
is the user name supplied for authentication on the remote machine. If this is nil,
Hemlock uses the local name.

10.9 Reading Messages

This section describes basic commands that show the current, next, and previous messages,
as well as a couple advanced commands. Show Message (bound to SPACE in Headers mode)
will display the message represented by the scan line the Hemlock cursor is on. Deleted
messages are considered special, and the more conveniently bound commands for viewing
the next and previous messages (Next Undeleted Message bound to n and Previous Undeleted
Message bound to p, both in Headers and Message modes) will ignore them. Next Message
and Previous Message (bound to M-n and M-p in Headers and Message modes) may be
invoked if reading a message is desired regardless of whether it has been deleted.

[Command]Show Message stuff (bound to SPACE and . in Headers mode)
This command, when invoked in a Headers buffer, displays the current message (the
message the cursor is on), by replacing any previous message that has not been
preserved with Keep Message. The current message is also removed from the unseen
sequence. The Message buffer becomes the current buffer using the current window.
The buffer’s point will be moved to the beginning of the buffer, and the buffer’s name
will be set to a string of the form "Message <folder> <msg-id>".

TheMessage buffer is read-only and may not be modified. The command Goto Headers
Buffer issued in the Message buffer makes the associated Headers buffer current.

When not in a Headers buffer, this command prompts for a folder and message. A
unique Message buffer is obtained, and its name is set to a string of the form "Message
<folder> <msg-id>". The buffer’s point is moved to the beginning of the buffer, and
the current window is used to display the message.

Specifying multiple messages inserts all the messages into the same buffer. If the user
wishes to show more than one message, it is expected that he will generate a headers
buffer with the intended messages, and then use the message sequencing commands
described below.

[Command]Next Message stuff (bound to M-n in Headers and Message modes)
This command is only meaningful in a Headers buffer or a Message buffer associated
with a Headers buffer. In a Headers buffer, the point is moved to the next message,
and if there is one, it is shown as described in the Show Message command.

In a Message buffer, the message after the currently visible message is displayed. This
clobbers the buffer’s contents. Note, if the Message buffer is associated with a Draft

Chapter 10: The Mail Interface 94

buffer, invoking this command breaks that association. Using Keep Message preserves
the Message buffer and any association with a Draft buffer.

The Message buffer’s name is set as described in the Show Message command.

[Command]Previous Message stuff (bound to M-p in Headers and Message
modes)

This command is only meaningful in a Headers buffer or a Message buffer associated
with a Headers buffer. In a Headers buffer, the point is moved to the previous message,
and if there is one, it is shown as described in the Show Message command.

In a Message buffer, the message before the currently visible message is displayed.
This clobbers the buffer’s contents. Note, if the Message buffer is associated with
a Draft buffer, invoking this command breaks that association. Using Keep Message
preserves the Message buffer and any association with a Draft buffer.

The Message buffer’s name is set as described in the Show Message command.

[Command]Next Undeleted Message stuff (bound to n in Headers and Message
modes)

This command is only meaningful in a Headers buffer or a Message buffer associated
with a Headers buffer. In a Headers buffer, the point is moved to the next undeleted
message, and if there is one, it is shown as described in the Show Message command.

In a Message buffer, the first undeleted message after the currently visible message
is displayed. This clobbers the buffer’s contents. Note, if the Message buffer is
associated with a Draft buffer, invoking this command breaks that association. The
Keep Message command preserves the Message buffer and any association with a Draft
buffer.

The Message buffer’s name is set as described in the Show Message command.

[Command]Previous Undeleted Message stuff (bound to p in Headers and
Message modes)

This command is only meaningful in a Headers buffer or a Message buffer associated
with a Headers buffer. In a Headers buffer, the point is moved to the previous undeleted
message, and if there is one, it is shown as described in the Show Message command.

In a Message buffer, the first undeleted message before the currently visible message
is displayed. This clobbers the buffer’s contents. Note, if the Message buffer is
associated with a Draft buffer, invoking this command breaks that association. The
Keep Message command preserves the Message buffer and any association with a Draft
buffer.

The Message buffer’s name is set as described in the Show Message command.

[Command]Scroll Message stuff (bound to SPACE and C-v in Message mode)
[Hemlock Variable]Scroll Message Showing Next (initial value t)

This command scrolls the current window down through the current message. If the
end of the message is visible and Scroll Message Showing Next is not nil, then show
the next undeleted message.

[Command]Keep Message
This command can only be invoked in a Message buffer. It causes the Message buffer
to continue to exist when the user invokes commands to view other messages either

Chapter 10: The Mail Interface 95

within the kept Message buffer or its associated Headers buffer. This is useful for get-
ting two messages into different buffers. It is also useful for retaining Message buffers
which would otherwise be deleted when an associated draft message is delivered.

[Command]Message Help (bound to Message: ?)
This command displays documentation on Message mode.

10.10 Sending Messages

The most useful commands for sending mail are Send Message (bound to m and s in Headers
and Message modes), Reply to Message (bound to r in Headers mode), and Reply to Message
in Other Window (bound to r in Message mode). These commands set up a Draft buffer and
associate a Message buffer with the draft when possible. To actually deliver the message
to its recipient(s), use Deliver Message (bound to H-s in Draft mode). To abort sending
mail, use Delete Draft and Buffer (bound to H-q in Draft mode). If one wants to temporarily
stop composing a draft with the intention of finishing it later, then the Save File command
(bound to C-x C-s) will save the draft to the user’s draft folder.

Draft buffers have a special Hemlock minor mode called Draft mode. The major mode
of a Draft buffer is taken from the Default Modes variable. The user may wish to arrange
that Text mode (and possibly Fill mode or Save mode) be turned on whenever Draft mode
is set. For a further description of how to manipulate modes in Hemlock see the Hemlock
Command Implementor’s Manual.

[Command]Send Message stuff (bound to s and m in Headers and Message
modes and C-x m globally)

This command, when invoked in a Headers buffer, creates a unique Draft buffer and
a unique Message buffer. The current message is inserted in the Message buffer, and
the Draft buffer is displayed in the current window. The Draft buffer’s point is moved
to the end of the line containing To: if it exists. The name of the draft message file
is used to produce the buffer’s name. A pathname is associated with the Draft buffer
so that Save File can be used to incrementally save a composition before delivering
it. The comp utility will be used to allocate a draft message in the user’s MH draft
folder and to insert the proper header components into the draft message. Both the
Draft and Message buffers are associated with the Headers buffer, and the Draft buffer
is associated with the Message buffer.

When invoked in a Message buffer, a unique Draft buffer is created, and these two
buffers are associated. If the Message buffer is associated with a Headers buffer, this
association is propagated to the Draft buffer. Showing other messages while in this
Headers buffer will not affect this Message buffer.

When not in a Headers or Message buffer, this command does the same thing as
described in the previous two cases, but there are no Message or Headers buffer ma-
nipulations.

Deliver Message will deliver the draft to its intended recipient(s).

The Goto Headers Buffer command, when invoked in a Draft or Message buffer, makes
the associated Headers buffer current. The Goto Message Buffer command, when
invoked in a Draft buffer, makes the associated Message buffer current.

Chapter 10: The Mail Interface 96

[Command]Reply to Message stuff (bound to r in Headers mode)
[Command]Reply to Message in Other Window stuff (bound to r in Message

mode)
[Hemlock Variable]Reply to Message Prefix Action

Reply to Message, when invoked in a Headers buffer, creates a unique Draft buffer and
a unique Message buffer. The current message is inserted in the Message buffer, and
the Draft buffer is displayed in the current window. The draft components are set up
in reply to the message, and the Draft buffer’s point is moved to the end of the buffer.
The name of the draft message file is used to produce the buffer’s name. A pathname
is associated with the Draft buffer so that Save File can be used to incrementally save
a composition before delivering it. The repl utility will be used to allocate a draft
message file in the user’s MH draft folder and to insert the proper header components
into the draft message. Both the Draft and Message buffers are associated with the
Headers buffer, and the Draft buffer is associated with the Message buffer.

When invoked in a Message buffer, a unique Draft buffer is set up using the message in
the buffer as the associated message. Any previous association between the Message
buffer and a Draft buffer is removed. Any association of the Message buffer with a
Headers buffer is propagated to the Draft buffer.

When not in a Headers buffer or Message buffer, this command prompts for a folder
and message to reply to. This message is inserted into a unique Message buffer, and
a unique Draft buffer is created as in the previous two cases. There is no association
of either the Message buffer or the Draft buffer with a Headers buffer.

When a prefix argument is supplied, Reply to Message Prefix Action is considered with
respect to supplying carbon copy switches to repl. This variable’s value is one of
:cc-all, :no-cc-all, or nil. See section [Styles], page 102, for examples of how to use
this.

Reply to Message in Other Window is identical to Reply to Message, but the current
window is split showing the Draft buffer in the new window. The split window displays
the Message buffer.

Deliver Message will deliver the draft to its intended recipient(s).

The Goto Headers Buffer commmand, when invoked in a Draft or Message buffer,
makes the associated Headers buffer current. The Goto Message Buffer command,
when invoked in a Draft buffer, makes the associated Message buffer current.

[Command]Forward Message stuff (bound to f in Headers and Message modes)
This command, when invoked in a Headers buffer, creates a unique Draft buffer. The
current message is inserted in the draft by using the forw utility, and the Draft buffer
is shown in the current window. The name of the draft message file is used to produce
the buffer’s name. A pathname is associated with the Draft buffer so that Save File can
be used to incrementally save a composition before delivering it. The Draft buffer is
associated with the Headers buffer, but no Message buffer is created since the message
is already a part of the draft.

When invoked in aMessage buffer, a unique Draft buffer is set up inserting the message
into the Draft buffer. The Message buffer is not associated with the Draft buffer
because the message is already a part of the draft. However, any association of the
Message buffer with a Headers buffer is propagated to the Draft buffer.

Chapter 10: The Mail Interface 97

When not in a Headers buffer or Message buffer, this command prompts for a folder
and message to forward. A Draft buffer is created as described in the previous two
cases.

Deliver Message will deliver the draft to its intended recipient(s).

[Command]Deliver Message stuff (bound to H-s and H-c in Draft mode)
[Hemlock Variable]Deliver Message Confirm (initial value nil)

This command, when invoked in a Draft buffer, saves the file and uses the MH send
utility to deliver the draft. If the draft is a reply to some message, then anno is used to
annotate that message with a "replied" component. Any Headers buffers containing
the replied-to message are updated with an "A" placed in the appropriate headers
line two characters after the message ID. Before doing any of this, confirmation is
asked for based on Deliver Message Confirm.

When not in a Draft buffer, this prompts for a draft message ID and invokes send on
that draft message to deliver it. Sending a draft in this way severs any association
that draft may have had with a message being replied to, so no annotation will occur.

[Command]Delete Draft and Buffer stuff (bound to H-q in Draft mode)
This command, when invoked in a Draft buffer, deletes the draft message file and the
buffer. This also deletes any associated message buffer unless the user preserved it
with Keep Message.

[Command]Remail Message stuff (bound to H-r in Headers and Message modes)
This command, when invoked in a Headers or Message buffer, prompts for resend To:
and resend Cc: addresses, remailing the current message. When invoked in any other
kind of buffer, this command prompts for a folder and message as well. MH’s dist sets
up a draft folder message which is then modified. The above mentioned addresses are
inserted on the Resent-To: and Resent-Cc: lines. Then the message is delivered.

There is no mechanism for annotating messages as having been remailed.

[Command]Draft Help (bound to Draft: H-?)
This command displays documentation on Draft mode.

10.11 Convenience Commands for Message and Draft
Buffers

This section describes how to switch from a Message or Draft buffer to its associated Headers
buffer, or from a Draft buffer to its associated Message buffer. There are also commands for
various styles of inserting text from a Message buffer into a Draft buffer.

[Command]Goto Headers Buffer (bound to ^ in Message mode and H-^ in
Draft mode)

This command, when invoked in a Message or Draft buffer with an associated Headers
buffer, places the associated Headers buffer in the current window.

The cursor is moved to the headers line of the associated message.

[Command]Goto Message Buffer stuff (bound to H-m in Draft mode)
This command, when invoked in a Draft buffer with an associated Message buffer,
places the associated Message buffer in the current window.

Chapter 10: The Mail Interface 98

[Command]Insert Message Region stuff (bound to H-y in appropriate modes)
[Hemlock Variable]Message Insertion Prefix (initial value " ")
[Hemlock Variable]Message Insertion Column (initial value 75)

This command, when invoked in a Message or News-Message (where it is bound)
buffer that has an associated Draft or Post buffer, copies the current active region
into the Draft or Post buffer. It is filled using Message Insertion Prefix (which defaults
to three spaces) and Message Insertion Column. If an argument is supplied, the filling
is inhibited.

[Command]Insert Message Buffer stuff (bound to H-y in appropriate modes)
[Hemlock Variable]Message Buffer Insertion Prefix (initial value " ")

This command, when invoked in a Draft or Post (where it is bound) buffer with an
associated Message or News-Message buffer, or when in a Message (or News-Message)
buffer that has an associated Draft buffer, inserts the Message buffer into the Draft
(or Post) buffer. Each inserted line is modified by prefixing it with Message Buffer
Insertion Prefix (which defaults to four spaces) . If an argument is supplied, the
prefixing is inhibited.

[Command]Edit Message Buffer stuff (bound to e in Message mode)
This command puts the current Message buffer in Text mode and makes it writable
(Message buffers are normally read-only). The pathname of the file which the message
is in is associated with the buffer making saving possible. A recursive edit is entered,
and the user is allowed to make changes to the message. When the recursive edit is
exited, if the buffer is modified, the user is asked if the changes should be saved. The
buffer is marked unmodified, and the pathname is disassociated from the buffer. The
buffer otherwise returns to its previous state as a Message buffer. If the recursive
edit is aborted, the user is not asked to save the file, and the buffer remains changed
though it is marked unmodified.

10.12 Deleting Messages

The main command described in this section is Headers Delete Message (bound to k in
Headers and Message modes). A useful command for reading new mail is Delete Message
and Show Next (bound to d in Message mode) which deletes the current message and shows
the next undeleted message.

Since messages are by default deleted using a virtual message deletion mechanism, Ex-
punge Messages (bound to ! in Headers mode) should be mentioned here. This is described
in section [terminating], page 100.

[Hemlock Variable]Virtual Message Deletion (initial value t)
When set, Delete Message adds a message to the "hemlockdeleted" sequence; other-
wise, rmm is invoked on the message immediately.

[Command]Delete Message
This command prompts for a folder, messages, and an optional pick expression. When
invoked in a Headers buffer of the specified folder, the prompt for a message specifi-
cation will default to the those messages in that Headers buffer.

When the variable Virtual Message Deletion is set, this command merely flags the
messages for deletion by adding them to the "hemlockdeleted" sequence. Then this

Chapter 10: The Mail Interface 99

updates any Headers buffers representing the folder. It notates each headers line
referring to a deleted message with a "D" in the third character position after the
message ID.

When Virtual Message Deletion is not set, rmm is invoked on the message, and each
headers line referring to the deleted message is deleted from its buffer

[Command]Headers Delete Message stuff (bound to k in Headers and Message
modes)

This command, when invoked in a Headers buffer, deletes the message on the current
line as described in Delete Message.

When invoked in a Message buffer, the message displayed in it is deleted as described
in Delete Message.

[Command]Delete Message and Show Next stuff (bound to k in Headers and
Message modes)

This command is only valid in a Headers buffer or a Message buffer associated with
some Headers buffer. The current message is deleted as with the Delete Message
command. Then the next message is shown as with Next Undeleted Message.

[Command]Delete Message and Down Line stuff (bound to d in Headers mode)
This command, when invoked in a Headers buffer, deletes the message on the current
line. Then the point is moved to the next non-blank line.

[Command]Undelete Message
This command is only meaningful when Virtual Message Deletion is set. This prompts
for a folder, messages, and an optional pick expression. When in a Headers buffer of
the specified folder, the messages prompt defaults to those messages in the buffer. All
Headers buffers representing the folder are updated. Each headers line referring to
an undeleted message is notated by replacing the "D" in the third character position
after the message ID with a space.

[Command]Headers Undelete Message stuff (bound to u in Headers and
Message modes)

This command is only meaningful when Virtual Message Deletion is set. When invoked
in a Headers buffer, the message on the current line is undeleted as described in
Undelete Message.

When invoked in a Message buffer, the message displayed in it is undeleted as de-
scribed in Undelete Message.

10.13 Folder Operations

[Command]List Folders
This command displays a list of all current mail folders in the user’s top-level mail
directory in a Hemlock pop-up window.

[Command]Create Folder
This command prompts for and creates a folder. If the folder already exists, an error
is signaled.

Chapter 10: The Mail Interface 100

[Command]Delete Folder
This command prompts for a folder and uses rmf to delete it. Note that no confir-
mation is asked for.

10.14 Refiling Messages

[Command]Refile Message
This command prompts for a folder, messages, an optional pick expression, and a
destination folder. When invoked in a Headers buffer of the specified folder, the
message prompt offers a default of those messages in the buffer. If the destination
folder does not exist, the user is asked to create it. The resulting messages are refiled
with the refile utility. All Headers buffers for the folder are updated. Each line
referring to a refiled message is deleted from its buffer.

[Command]Headers Refile Message stuff (bound to o in Headers and Message
modes)

This command, when invoked in a Headers buffer, prompts for a destination folder,
refiling the message on the current line with refile. If the destination folder does not
exist, the user is asked to create it. Any Headers buffers containing messages for that
folder are updated. Each headers line referring to the refiled message is deleted from
its buffer.

When invoked in a Message buffer, that message is refiled as described above.

10.15 Marking Messages

[Command]Mark Message
This command prompts for a folder, message, and sequence and adds (deletes) the
message specification to (from) the sequence. By default this adds the message, but if
an argument is supplied, this deletes the message. When invoked in a Headers buffer
or Message buffer, this only prompts for a sequence and uses the current message.

10.16 Terminating Headers Buffers

The user never actually exits the mailer. He can leave mail buffers lying around while
conducting other editing tasks, selecting them and continuing his mail handling whenever.
There still is a need for various methods of terminating or cleaning up Headers buffers. The
two most useful commands in this section are Expunge Messages and Quit Headers.

[Hemlock Variable]Expunge Messages Confirm (initial value t)
When this is set, Quit Headers and Expunge Messages will ask for confirmation before
expunging messages and packing the folder’s message ID’s.

[Hemlock Variable]Temporary Draft Folder (initial value nil)
This is a folder name where MH fcc: messages are kept with the intention that this
folder’s messages will be deleted and expunged whenever messages from any folder
are expunged (for example, when Expunge Messages or Quit Headers is invoked.

Chapter 10: The Mail Interface 101

[Command]Expunge Messages stuff (bound to ! in Headers mode)
This command deletes messages mark’ed for deletion, and compacts the folder’s mes-
sage ID’s. If there are messages to expunge, ask the user for confirmation, displaying
the folder name. This can be inhibited by setting Expunge Messages Confirm to nil.
When Temporary Draft Folder is not nil, this command deletes and expunges that
folder’s messages regardless of the folder in which the user invokes it, and a negative
response to the request for confirmation inhibits this.

When invoked in a Headers buffer, the messages in that folder’s "hemlockdeleted"
sequence are deleted by invoking rmm. Then the ID’s of the folder’s remaining mes-
sages are compacted using the folder utility. Since headers must be regenerated due
to renumbering or reassigning message ID’s, and because Headers buffers become in-
consistent after messages are deleted, Hemlock must regenerate all the headers for the
folder. Multiple Headers buffers for the same folder are then collapsed into one buffer,
deleting unnecessary duplicates. Any Message buffers associated with these Headers
buffers are deleted.

If there is an unseen Headers buffer for the folder, it is handled separately from
the Headers buffers described above. Hemlock tries to update it by filling it only
with remaining unseen message headers. Additionally, any headers generated due
to Unseen Headers Message Spec are inserted. If there are no headers, unseen or
otherwise, the buffer is left blank.

Any Draft buffer set up as a reply to a message in the folder is affected as well since the
associated message has possibly been deleted. When a draft of this type is delivered,
no message will be annotated as having been replied to.

When invoked in a Message buffer, this uses its corresponding folder as the folder
argument. The same updating as described above occurs.

In any other type of buffer, a folder is prompted for.

[Command]Quit Headers stuff (bound to q in Headers and Message modes)
This command affects the current Headers buffer. When there are deleted messages,
ask the user for confirmation on expunging the messages and packing the folder’s
message ID’s. This prompting can be inhibited by setting Expunge Messages Confirm
to nil. After deleting and packing, this deletes the buffer and all its associatedMessage
buffers.

Other Headers buffers regarding the same folder are handled as described in Expunge
Messages, but the buffer this command is invoked in is always deleted.

When Temporary Draft Folder is not nil, this folder’s messages are deleted and ex-
punged regardless of the folder in which the user invokes this command. A negative
response to the above mentioned request for confirmation inhibits this.

[Command]Delete Headers Buffer and Message Buffers
This command prompts for a Headers buffer to delete along with its associated Mes-
sage buffers. Any associated Draft buffers are left intact, but their corresponding
Message buffers will be deleted. When invoked in a Headers buffer or a Message buffer
associated with a Headers buffer, that Headers buffer is offered as a default.

Chapter 10: The Mail Interface 102

10.17 Miscellaneous Commands

[Command]List Mail Buffers stuff (bound to l in Headers and Message modes
H-l in Draft mode)

This command shows a list of all mail Message, Headers, and Draft buffers.

If a Message buffer has an associated Headers buffer, it is displayed to the right of the
Message buffer’s name.

If a Draft buffer has an associated Message buffer, it is displayed to the right of the
Draft buffer’s name. If a Draft buffer has no associated Message buffer, but it is
associated with a Headers buffer, then the name of the Headers buffer is displayed to
the right of the Draft buffer.

For each buffer listed, if it is modified, then an asterisk is displayed before the name
of the buffer.

10.18 Styles of Usage

This section discusses some styles of usage or ways to make use of some of the features of
Hemlock’s interface to MH that might not be obvious. In each case, setting some variables
and/or remembering an extra side effect of a command will lend greater flexibility and
functionality to the user.

10.18.1 Unseen Headers Message Spec

The unseen Headers buffer by default only shows unseen headers which is adequate for one
folder, simple mail handling. Some people use their New Mail Folder only for incoming
mail, refiling or otherwise dispatching a message immediately. Under this mode it is easy
to conceive of the user not having time to respond to a message, but he would like to leave
it in this folder to remind him to take care of it. Using the Unseen Headers Message Spec
variable, the user can cause all the messages the New Mail Folder to be inserted into the
unseen Headers buffer whenever just unseen headers would be. This way he sees all the
messages that require immediate attention.

To achieve the above effect, Unseen Headers Message Spec should be set to the string "all".
This variable can be set to any generalMHmessage specification (see section [mhcommands],
page 90, of this chapter), so the user can include headers of messages other than those that
have not been seen without having to insert all of them. For example, the user could set the
variable to "flagged" and use the Mark Message command to add messages he’s concerned
about to the "flagged" sequence. Then the user would see new mail and interesting mail in
his unseen Headers buffer, but he doesn’t have to see everything in his New Mail Folder.

10.18.2 Temporary Draft Folder

Section [components-files], page 87, of this chapter discusses how to make MH keep personal
copies of outgoing mail. The method described will cause a copy of every outgoing message
to be saved forever and requires the user to go through his Fcc: folder, weeding out those
he does not need. The Temporary Draft Folder variable can name a folder whose messages
will be deleted and expunged whenever any folder’s messages are expunged. By naming
this folder in the MH profile and components files, copies of outgoing messages can be saved
temporarily. They will be cleaned up automatically, but the user still has a time frame in

Chapter 10: The Mail Interface 103

which he can permanently save a copy of an outgoing message. This folder can be visited
with Message Headers, and messages can be refiled just like any other folder.

10.18.3 Reply to Message Prefix Action

Depending on the kinds of messages one tends to handle, the user may find himself usually
replying to everyone who receives a certain message, or he may find that this is only desired
occasionally. In either case, the user can set up his MH profile to do one thing by default,
using the Reply to Message Prefix Action variable in combination with a prefix argument to
the Reply to Message command to get the other effect.

For example, the following line in one’s MH profile will cause MH to reply to everyone
receiving a certain message (except for the user himself since he saves personal copies with
the -fcc switch):

repl: -cc all -nocc me -fcc out-copy

This user can set Reply to Message Prefix Action to be :no-cc-all. Then whenever he
invokes Reply to Message with a prefix argument, instead of replying to everyone, the draft
will be set up in reply only to the person who sent the mail.

As an alternative example, not specifying anything in one’s MH profile and setting this
variable to :cc-all will have a default effect of replying only to the sender of a piece of mail.
Then invoking Reply to Message with a prefix argument will cause everyone who received
the mail to get a copy of the reply. If the user does not want a cc: copy, then he can add
-nocc me as a default switch and value in his MH profile.

Chapter 10: The Mail Interface 104

10.19 Wallchart

Global bindings:

Incorporate and Read New Mail C-x i
Send Message C-x m
Message Headers C-x r

Headers and Message modes bindings:

Next Undeleted Message n
Previous Undeleted Message p
Send Message s, m
Forward Message f
Headers Delete Message k
Headers Undelete Message u
Headers Refile Message o
List Mail Buffers l
Quit Headers q
Incorporate and Read New Mail i
Next Message M-n
Previous Message M-p
Beginning of Buffer <

End of Buffer >

Headers mode bindings:

Delete Message and Down Line d
Pick Headers h
Show Message space, .
Reply to Message r
Expunge Messages !

Message mode bindings:

Delete Message and Show Next d
Goto Headers Buffer ^

Scroll Message space
Scroll Message C-v
Scroll Window Up backspace,

delete

Reply to Message in Other Window r
Edit Message Buffer e
Insert Message Region H-y

105

Draft mode bindings:

Goto Headers Buffer H-^
Goto Message Buffer H-m
Deliver Message H-s, H-c
Insert Message Buffer H-y
Delete Draft and Buffer H-q
List Mail Buffers H-l

106

11 The Hemlock Netnews Interface

11.1 Introduction to Netnews in Hemlock

Hemlock provides a facility for reading bulletin boards through the NetNews Transfer Pro-
tocol (NNTP). You can easily read Netnews, reply to news posts, post messages, etc. The
news reading interface is consistent with that of the Hemlock mailer, and most Netnews
commands function in the same manner as their mailer counterparts.

Netnews can be read in one of two different modes. The first mode, invoked by the
Netnews command, allows the user to read new messages in groups which the user has
specified. This method of reading netnews will track the highest numbered message in each
newsgroup and only show new messages which have arrived since then. The Netnews Browse
command invokes the other method of reading netnews. This mode displays a list of all
newsgroups, and the user may choose to read messages in any of them. By default, the
news reader will not track the latest message read when browsing, and it will always display
the last few messages.

11.2 Setting Up Netnews

To start reading bulletin boards from Hemlock you probably need to create a file containing
the newsgroups you want to read.

[Hemlock Variable]Netnews Group File (initial value ".hemlock-groups")
When you invoke the Netnews command, Hemlock merges the value of this variable
with your home directory and looks there for a list of groups (one per line) to read.

[Hemlock Variable]Netnews Database File (initial value ".hemlock-netnews")
When you invoke the Netnews command, Hemlock merges the value of this variable
with your home directory. This file maintains a pointer to the highest numbered
message read in each group in Netnews Group File.

[Command]List All Groups
When you invoke this command, Hemlock creates a buffer called Netnews Groups and
inserts the names of all accessible Netnews groups into it alphabetically. You may
find this useful if you choose to set up your Netnews Group File manually.

[Hemlock Variable]Netnews NNTP Server (initial value
"netnews.srv.cs.cmu.edu")

This variable stores the host name of the machine which Hemlock will use as the
NNTP server.

[Hemlock Variable]Netnews NNTP Timeout Period (initial value 30)
This is the number of seconds Hemlock will wait trying to connect to the NNTP
server. If a connection is not made within this time period, the connection will time
out and an error will be signalled.

Chapter 11: The Hemlock Netnews Interface 107

11.2.1 News-Browse Mode

News-Browse mode provides an easy method of adding groups to your Netnews Group File.

[Command]Netnews Browse
This command sets up a buffer in News-Browse mode with all available groups listed
one per line. Groups may be read or added to your group file using various commands
in this mode.

[Command]Netnews Browse Add Group To File stuff (bound to a in
News-Browse mode)

[Command]Netnews Browse Pointer Add Group to File
Netnews Browse Add Group to File adds the group under the point to your group
file, and Netnews Browse Pointer Add Group To File adds the group under the mouse
pointer without moving the point.

[Command]Netnews Browse Read Group stuff (bound to space in News-Browse
mode)

[Command]Netnews Browse Pointer Read Group
Netnews Browse Read Group and Netnews Browse Pointer Read Group read the group
under the cursor and the group under the mouse pointer, respectively. These com-
mands neither use nor modify the contents of your Netnews Database File; they will
always present the last few messages in the newsgroup, regardless of the last message
read. Netnews Browse Pointer Read Group does not modify the position of the point.

[Command]Netnews Quit Browse
This command exits News-Browse mode.

The Next Line and Previous Line commands are conveniently bound to n and p in this
mode.

11.3 Starting Netnews

Once your Netnews Group File is set up, you may begin reading netnews.

[Command]Netnews
This command is the main entry point for reading bulletin boards in Hemlock. With-
out an argument, the system looks for what bulletin boards to read in the value of
Netnews Group File and reads each of them in succession. Hemlock keeps a pointer
to the last message you read in each of these groups in your Netnews Database File.
Bulletin boards may be added to your Netnews Group File manually or by using the
Netnews Browse facility. With an argument, Hemlock prompts the user for the name
of a bulletin board and reads it.

[Command]Netnews Look at Group
This command prompts for a group and reads it, ignoring the information in your
Netnews Database File.

When you read a group, Hemlock creates a buffer that contains important header in-
formation for the messages in that group. There are four fields in each header, one each
for the date, lines, from, and subject. The date field shows when the message was sent,

Chapter 11: The Hemlock Netnews Interface 108

the lines field displays how long the message is in lines, the from field shows who sent the
message, and the subject field displays the subject of this message. If a field for a message
is not available, NA will appear instead. You may alter the length of each of these fields by
modifying the following Hemlock variables:

[Hemlock Variable]Netnews Before Date Field Pad (initial value 1)
How many spaces should be inserted before the date in News-Headers buffers.

[Hemlock Variable]Netnews Date Field Length (initial value 6)
[Hemlock Variable]Netnews Line Field Length (initial value 3)
[Hemlock Variable]Netnews From Field Length (initial value 20)
[Hemlock Variable]Netnews Subject Field Length (initial value 43)

These variables control how long the date, line, from, and subject fields should be in
News-Headers buffers.

[Hemlock Variable]Netnews Field Padding (initial value 2)
How many spaces should be left between the Netnews date, from, lines, and subject
fields after padding to the required length.

For increased speed, Hemlock only inserts headers for a subset of the messages in each
group. If you have never read a certain group, and the value of Netnews New Group Style
is :from-end (the default), Hemlock inserts some number of the last messages in the group,
determined by the value of Netnews Batch Count. If the value of Netnews New Group Style
is :from-start, Hemlock will insert the first batch of messages in the group. If you have read
a group before, Hemlock will insert the batch of messages following the highest numbered
message that you had read previously.

[Hemlock Variable]Netnews Start Over Threshold (initial value 350)
If the number of new messages in a group exceeds the value of this variable and
Netnews New Group Style is :from-end, Hemlock asks if you would like to start reading
this group from the end.

You may at any time go beyond the messages that are visible using the Netnews Next
Line, Netnews Previous Line, Netnews Headers Scroll Window Up, and Netnews Headers Scroll
Down commands in News-Headers mode, or the Netnews Next Article and Netnews Previous
Article commands in News-Message mode.

[Hemlock Variable]Netnews Fetch All Headers (initial value nil)
This variable determines whether Netnews will fetch all headers immediately upon
entering a new group.

[Hemlock Variable]Netnews Batch Count (initial value 50)
This variable determines how many headers the Netnews facility will fetch at a time.

[Hemlock Variable]Netnews New Group Style (initial value :from-end)
This variable determines what happens when you read a group that you have never
read before. When it is :from-start, the Netnews command will read from the begin-
ning of a new group forward. When it is :from-end, the default, Netnews will read
the group from the end backward.

Chapter 11: The Hemlock Netnews Interface 109

11.4 Reading Messages

From a News-Headers buffer, you may read messages, reply to messages via the Hemlock
mailer, or reply to messages via post. Some commands are also bound to ease getting from
one header to another.

[Command]Netnews Show Article stuff (bound to space in News-Headers mode)
[Hemlock Variable]Netnews Read Style (initial value :multiple)
[Hemlock Variable]Netnews Headers Proportion (initial value 0.25)

This command puts the body of the message header under the current point into a
News-Message buffer. If the value of Netnews Read Style is :single, Hemlock changes
to the News-Message buffer. If it is :multiple, then Hemlock splits the current window
into two windows, one for headers and one for message bodies. The headers window
takes up a proportion of the current window based on the value of Netnews Headers
Proportion. If the window displaying the News-Headers buffer has already been split,
and the message currently displayed in the News-Message window is the same as the
one under the current point, this command behaves just like Netnews Message Scroll
Down.

[Hemlock Variable]Netnews Message Header Fields (initial value nil)
When this variable is nil, all available fields are displayed in the header of a message.
Otherwise, this variable should containt a list of fields to include in message headers.
If an element of this list is an atom, then it should be the string name of a field. If
it is a cons, then the car should be the string name of a field, and the cdr should be
the length to which this field should be limited. Any string name is acceptable, and
fields that do not exist are ignored.

[Command]Netnews Show Whole Header stuff (bound to w in News-Headers and
News-Message modes.)

This command displays the entire header for the message currently being read. This
is to undo the effects of Netnews Message Header Fields for the current message.

[Command]Netnews Next Line stuff (bound to C-n and Downarrow in
News-Headers mode)

[Hemlock Variable]Netnews Last Header Style (initial value :next-headers)
This command moves the current point to the next line. If you are on the last visible
message, and there are more in the current group, headers for these messages will be
inserted. If you are on the last header and there are no more messages in this group,
then Hemlock will take some action based on the value of Netnews Last Header Style.
If the value of this variable is :feep, Hemlock feeps you indicating there are no more
messages. If the value is :next-headers, Hemlock reads in the headers for the next
group in your Netnews Group File. If the value is :next-article, Hemlock goes on to
the next group and shows you the first unread message.

[Command]Netnews Previous Line stuff (bound to C-p and Uparrow in
News-Headers mode)

This command moves the current point to the previous line. If you are on the first
visible header, and there are more previous messages, Hemlock inserts the headers for
these messages.

Chapter 11: The Hemlock Netnews Interface 110

[Command]Netnews Headers Scroll Window Down stuff (bound to C-v in
News-Headers mode)

[Command]Netnews Headers Scroll Window Up stuff (bound to M-v in
News-Headers mode)

These commands scroll the headers window up or down one screenfull. If the end of
the buffer is visible, Hemlock inserts the next batch of headers.

[Command]Netnews Next Article stuff (bound to n in News-Message and
News-Headers modes)

[Command]Netnews Previous Article stuff (bound to p in News-Message and
News-Headers modes)

These commands insert the next or previous message into a message buffer.

[Command]Netnews Message Scroll Down stuff (bound to space in
News-Message mode)

[Hemlock Variable]Netnews Scroll Show Next Message (initial value t)
If the end of the current message is visible, Hemlock feeps the user if the value of
Netnews Scroll Show Next Message is non-nil, or it inserts the next message into this
message buffer if that variable is nil. If the end of the message is not visible, then
Hemlock shows the next screenfull of the current message.

[Command]Netnews Message Quit stuff (bound to q in News-Message mode)
This command deletes the current message buffer and makes the associated News-
Headers buffer current.

[Command]Netnews Goto Headers Buffer stuff (bound to H-h in
News-Message mode)

This command, when invoked from a News-Message buffer with an associated News-
Headers buffer, places the associated News-Headers buffer into the current window.

[Command]Netnews Message Keep Buffer stuff (bound to k in News-Message
mode)

By default, Hemlock uses one buffer to display all messages in a group, one at a
time. This command tells Hemlock to keep the current message buffer intact and
start reading messages in another buffer.

[Command]Netnews Select Message Buffer stuff (bound to H-m in
News-Headers and Post modes.)

In News-Headers mode, this command selects the buffer containing the last message
read. In Post mode, it selects the associated News-Message buffer, if there is one.

[Command]Netnews Append to File stuff (bound to a in News-Headers and
News-Message modes.)

[Hemlock Variable]Netnews Message File (initial value
"netnews-messages.txt")

This command prompts for a file which the current message will be appended to. The
default file is the value of Netnews Message File merged with your home directory.

Chapter 11: The Hemlock Netnews Interface 111

[Command]Netnews Headers File Message stuff (bound to o in News-Headers
mode)

This command prompts for a mail folder and files the message under the point into
it. If the folder does not exist, Hemlock will ask if it should be created.

[Command]Netnews Message File Message stuff (bound to o in News-Message
mode)

This command prompts for a mail folder and files the current message there. If the
folder does not exist, Hemlock will ask if it should be created.

[Command]Fetch All Headers stuff (bound to f in Netnews Headers mode)
In a forward reading Netnews headers buffer, this command inserts all headers after
the last visible one into the headers buffer. If Hemlock is reading this group backward,
the system inserts all headers before the first visible one into the headers buffer.

[Command]Netnews Go to Next Group stuff (bound to g in News-Headers and
News-Message modes.)

This command goes to the next group in your Netnews Group File. Before going on,
it sets the group pointer in Netnews Database Filename to the last message you read.
With an argument, the command does not modify the group pointer for the current
group.

[Command]Netnews Quit Starting Here stuff (bound to . in News-Headers
and News-Message modes)

This command goes to the next group in your Netnews Group File, setting the netnews
pointer for this group to the message before the one under the current point, so the
next time you read this group, the message indicated by the point will appear first.

[Command]Netnews Group Punt Messages stuff (bound to G in News-Headers
mode)

This command goes on to the next bulletin board in your group file. Without an
argument, the system sets the pointer for the current group to the last message.
With an argument, Hemlock sets the pointer to the last visible message in the group.

[Command]Netnews Exit stuff (bound to q in News-Headers mode)
[Hemlock Variable]Netnews Exit Confirm (initial value t)

This command cleans up and deletes the News-Headers buffer and all associated News-
Message buffers. If the value of Netnews Exit Confirm is nil, then Hemlock will not
prompt before exiting.

11.5 Replying to Messages

The Hemlock Netnews interface also provides an easy way of replying to messages through
the Hemlock Mailer or via Post mode.

[Command]Netnews Reply to Sender
When you invoke this command, Hemlock creates a Draft buffer and tries to fill in the
to and subject fields of the draft. For the to field, Hemlock looks at the reply-to field
of the message you are replying to, or failing that, the from field. If the subject field
does not start with Re:, Hemlock inserts this string, signifying that this is a reply.

Chapter 11: The Hemlock Netnews Interface 112

[Command]Netnews Reply to Sender in Other Window stuff (bound to r in
News-Headers and News-Message.)

This command splits the current window, placing the message you are replying to in
the top window and a new Draft buffer in the bottom one. This command fills in the
header fields in the same manner as Netnews Reply to Sender.

[Command]Netnews Reply to Group
This command creates a Post buffer with the newsgroups field set to the current group
and the subject field constructed in the same way as in Netnews Reply to Sender.

[Command]Netnews Reply to Group in Other Window stuff (bound to R in
News-Headers and News-Message.)

This command splits the current window, placing the message you are replying to in
the top window and a new Post buffer in the bottom one. This command will fill in
the header fields in the same manner as Netnews Reply to Group.

[Command]Netnews Post Message stuff (bound to C-x P)
This command creates a Post buffer. If you are in a News-Headers or News-Message
buffer, Hemlock fills in the newsgroups field with the current group.

[Command]Netnews Forward Message stuff (bound to f in News-Headers and
News-Message modes.)

This command creates a Post buffer. If you are in a Netnews Headers or News-Message
buffer, Hemlock will put the text of the current message into the buffer along with
lines delimiting the forwarded message.

[Command]Netnews Goto Post Buffer stuff (bound to H-p in News-Message
mode)

This command, when invoked in a News-Message or Draft buffer with an associated
News-Headers buffer, places the associated News-Headers buffer into the current win-
dow.

[Command]Netnews Goto Draft Buffer stuff (bound to H-d in News-Message
mode)

This command, when invoked in a News-Message buffer with an associated Draft
buffer, places the Draft buffer into the current window.

11.6 Posting Messages

[Command]Netnews Deliver Post stuff (bound to H-s in Post mode)
[Hemlock Variable]Netnews Deliver Post Confirm (initial value t)

This command delivers the contents of a Post buffer to the NNTP server. If Netnews
Deliver Post Confirm is t, Hemlock will ask for confirmation before posting the message.
Hemlock feeps you if NNTP does not accept the message.

[Command]Netnews Abort Post stuff (bound to H-q in Post mode)
This command deletes the current Post buffer.

Chapter 11: The Hemlock Netnews Interface 113

As in the mailer, when replying to a message you can be excerpt sections of it using Insert
Message Buffer and Insert Message Region in Post and News-Message modes, respectively.
You can also use these commands when replying to a message via mail in a Draft buffer. In
all cases, the same binding is used: H-y.

Chapter 11: The Hemlock Netnews Interface 114

11.7 Wallchart

Global bindings:

Netnews Post Message C-x P

News-Headers and News-Message modes bindings:

Netnews Next Article n
Netnews Previous Article p
Netnews Go to Next Group g
Netnews Group Punt Messages G
List All Groups l
Netnews Append to File a
Netnews Forward Message f
Netnews Reply to Sender in Other Window r
Netnews Reply to Group in Other Window R
Netnews Quit Starting Here .

News-Headers mode bindings:

Netnews Show Article Space
Netnews Previous Line C-p, Uparrow
Netnews Next Line C-n,

Downarrow

Netnews Headers Scroll Window Down C-v
Netnews Headers Scroll Window Up M-v
Netnews Select Message Buffer H-m
Netnews Exit q
Netnews Headers File Message o

News-Message mode bindings:

Netnews Message Scroll Down Space
Scroll Window Up Backspace
Netnews Goto Headers Buffer H-h, ^
Netnews Message Keep Buffer k
Netnews Message Quit q
Netnews Message File Message o
Netnews Goto Post Buffer H-p
Netnews Goto Draft Buffer H-d
Insert Message Region H-y

Post mode bindings:

115

Netnews Select Message Buffer H-m
Netnews Deliver Post H-s
Netnews Abort Post H-q
Insert Message Buffer H-y

News-Browse mode bindings:

Netnews Quit Browse q
Netnews Browse Add Group To File a
Netnews Browse Read Group Space
Next Line n
Previous Line p

116

12 System Interface

Hemlock provides a number of commands that access operating system resources such as the
filesystem and print servers. These commands offer an alternative to leaving the editor and
using the normal operating system command language (such as the Unix shell), but they are
implementation dependent. Therefore, they might not even exist in some implementations.

12.1 File Utility Commands

This section describes some general file operation commands and quick directory commands.

See section [dired], page 51, for a description Hemlock’s directory editing mechanism,
Dired mode.

[Command]Copy File
This command copies a file, allowing one wildcard in the filename. It prompts for
source and destination specifications.

If these are both directories, then the copying process is recursive on the source, and
if the destination is in the subdirectory structure of the source, the recursion excludes
this portion of the directory tree. Use dir-spec-1/* to copy only the files in a source
directory without recursively descending into subdirectories.

If the destination specification is a directory, and the source is a file, then it is copied
into the destination with the same filename.

The copying process copies files maintaining the source’s write date.

See the description of Dired Copy File Confirm, page [copy-confirm], page 53, for con-
trolling user interaction when the destination exists.

[Command]Rename File
This command renames a file, allowing one wildcard in the filename. It prompts for
source and destination specifications.

If the destination is a directory, then the renaming process moves file(s) indicated by
the source into the directory with their original filenames.

For Unix-based implementations, if you want to rename a directory, do not specify
the trailing slash in the source specification.

[Command]Delete File
This command prompts for the name of a file and deletes it.

[Command]Directory (bound to C-x C-d)
[Command]Verbose Directory (bound to C-x C-D)

These commands prompt for a pathname (which may contain wildcards), and display
a directory listing in a pop-up window. If a prefix argument is supplied, then normally
hidden files such as Unix dot-files will also be displayed. Directory uses a compact,
multiple-column format; Verbose Directory displays one file on a line, with information
about protection, size, etc.

Chapter 12: System Interface 117

12.2 Printing

[Command]Print Region
[Command]Print Buffer
[Command]Print File

Print Region and Print Buffer print the contents of the current region and the current
buffer, respectively. Print File prompts for a the name of a file and prints that file.
Any error messages will be displayed in the echo area.

[Hemlock Variable]Print Utility (initial value "/usr/cs/bin/lpr")
[Hemlock Variable]Print Utility Switches (initial value ())

Print Utility is the program the print commands use to send files to the printer. The
program should act like lpr: if a filename is given as an argument, it should print that
file, and if no name appears, standard input should be assumed. Print Utility Switches
is a list of strings specifying the options to pass to the program.

12.3 Scribe

[Command]Scribe Buffer File (bound to C-x c in Scribe mode)
[Hemlock Variable]Scribe Buffer File Confirm (initial value t)

[Command]Scribe File
Scribe Buffer File invokes Scribe Utility on the file associated with the current buffer.
That process’s default directory is the directory of the file. The process sends its
output to the Scribe Warnings buffer. Before doing anything, this asks the user to
confirm saving and formatting the file. This prompting can be inhibited with "Scribe
Buffer File Confirm".

Scribe File invokes Scribe Utility on a file supplied by the user in the same manner as
describe above.

[Hemlock Variable]Scribe Utility (initial value "/usr/misc/bin/scribe")
[Hemlock Variable]Scribe Utility Switches

Scribe Utility is the program the Scribe commands use to compile the text formatting.
Scribe Utility Switches is a list of strings whose contents would be contiguous charac-
ters, other than space, had the user invoked this program on a command line outside
of Hemlock. Do not include the name of the file to compile in this variable; the Scribe
commands supply this.

[Command]Select Scribe Warnings (bound to Scribe: C-M-C)
This command makes the Scribe Warnings buffer current if it exists.

12.4 Miscellaneous

[Command]Manual Page
This command displays a Unix manual page in a buffer which is in View mode. When
given an argument, this puts the manual page in a pop-up display.

118

[Command]Unix Filter Region
This command prompts for a UNIX program and then passes the current region to
the program as standard input. The standard output from the program is used to
replace the region. This command is undoable.

119

13 Simple Customization

Hemlock can be customized and extended to a very large degree, but in order to do much of
this a knowledge of Lisp is required. These advanced aspects of customization are discussed
in the Hemlock Command Implementor’s Manual, while simpler methods of customization
are discussed here.

13.1 Keyboard Macros

Keyboard macros provide a facility to turn a sequence of commands into one command.

[Command]Define Keyboard Macro (bound to C-x ()
[Command]End Keyboard Macro bind C-x)

Define Keyboard Macro starts the definition of a keyboard macro. The commands
which are invoked up until End Keyboard Macro is invoked become the definition for
the keyboard macro, thus replaying the keyboard macro is synonymous with invoking
that sequence of commands.

[Command]Last Keyboard Macro (bound to C-x e)
This command is the keyboard macro most recently defined; invoking it will replay
the keyboard macro. The prefix argument is used as a repeat count.

[Command]Define Keyboard Macro Key (bound to C-x M-(;)
[Hemlock Variable]Define Keyboard Macro Key Confirm (initial value t)

This command prompts for a key before going into a mode for defining keyboard
macros. After defining the macro Hemlock binds it to the key. If the key is already
bound, Hemlock asks for confirmation before clobbering the binding; this prompting
can be inhibited by setting Define Keyboard Macro Key Confirm to nil.

[Command]Keyboard Macro Query (bound to C-x q)
This command conditionalizes the execution of a keyboard macro. When invoked
during the definition of a macro, it does nothing. When the macro replays, it prompts
the user for a key-event indicating what action to take. The following commands are
defined:

Escape Exit all repetitions of this keyboard macro. More than one may have
been specified using a prefix argument.

Space, y Proceed with the execution of the keyboard macro.

Delete, Backspace, n
Skip the remainder of the keyboard macro and go on to the next repeti-
tion, if any.

! Do all remaining repetitions of the keyboard macro without prompting.

. Complete this repetition of the macro and then exit without doing any
of the remaining repetitions.

C-r Do a recursive edit and then prompt again.

Chapter 13: Simple Customization 120

[Command]Name Keyboard Macro
This command prompts for the name of a command and then makes the definition for
that command the same as Last Keyboard Macro’s current definition. The command
which results is not clobbered when another keyboard macro is defined, so it is possible
to keep several keyboard macros around at once. The resulting command may also
be bound to a key using Bind Key, in the same way any other command is.

Many keyboard macros are not for customization, but rather for one-shot use, a typical
example being performing some operation on each line of a file. To add "del " to the
beginning and ".*" to the end of every line in in a buffer, one could do this:

C-x (d e l Space C-e . * C-n C-a C-x) C-u 9 9 9 C-x e

First a keyboard macro is defined which performs the desired operation on one line, and
then the keyboard macro is invoked with a large prefix argument. The keyboard macro will
not actually execute that many times; when the end of the buffer is reached the C-n will
get an error and abort the execution.

13.2 Binding Keys

[Command]Bind Key
This command prompts for a command, a key and a kind of binding to make, and
then makes the specified binding. The following kinds of bindings are allowed:

buffer Prompts for a buffer and then makes a key binding which is only present
when that buffer is the current buffer.

mode Prompts for the name of a mode and then makes a key binding which is
only in present when that mode is active in the current buffer.

global Makes a global key binding which is in effect when there is no applicable
mode or buffer key binding. This is the default.

[Command]Delete Key Binding
This command prompts for a key binding the same way that Bind Key does and makes
the specified binding go away.

13.3 Hemlock Variables

A number of commands use Hemlock variables as flags to control their behavior. Often you
can get a command to do what you want by setting a variable. Generally the default value
for a variable is chosen to be the safest value for novice users.

[Command]Set Variable
This command prompts for the name of a Hemlock variable and an expression, then
sets the current value of the variable to the result of the evaluation of the expression.

[Command]Defhvar
Like Set Variable, this command prompts for the name of a Hemlock variable and
an expression. Like Bind Key, this command prompts for a place: mode, buffer or
local. The result of evaluating the expression is defined to be the value of the named
variable in the specified place.

Chapter 13: Simple Customization 121

This command is most useful for making mode or buffer local bindings of variables.
Redefining a variable in a mode or buffer will create a customization that takes effect
only when in that mode or buffer.

Unlike Set Variable, the variable name need not be the name of an existing vari-
able: new variables may be defined. If the variable is already defined in the current
environment, Hemlock copies the documentation and hooks to the new definition.

13.4 Init Files

Hemlock customizations are normally put in Hemlock’s initialization file, "hemlock-init.lisp",
or when compiled "hemlock-init.fasl". When starting up Lisp, use the -hinit switch to
indicate a particular file. The contents of the init file must be Lisp code, but there is a
fairly straightforward correspondence between the basic customization commands and the
equivalent Lisp code. Rather than describe these functions in depth here, a brief example
follows:

;;; -*- Mode: Lisp; Package: Hemlock -*-

;;; It is necessary to specify that the customizations go in

;;; the hemlock package.

(in-package ’hemlock)

;;; Bind Kill Previous Word to M-h.
(bind-key "Kill Previous Word" ’#(#\m-h))

;;;

;;; Bind Extract List to C-M-? when in Lisp mode.

(bind-key "Extract List" ’#(#\c-m-?) :mode "Lisp")

;;; Make C-w globally unbound.

(delete-key-binding ’#(#\c-w))

;;; Make string searches case-sensitive.

(setv string-search-ignore-case nil)

;;;

;;; Make "Query Replace" replace strings literally.

(setv case-replace nil)

For a detailed description of these functions, see the Hemlock Command Implementor’s
Manual.

122

Function Index

A
Abbrev Expand Only . 59
Abbrev Mode . 59
Abort Eval Input . 82
Abort Operations . 73
Abort Recursive Edit . 16
Accept Slave Connections . 72
Activate Region . 20
Add Definition Directory Translation 79
Add Global Word Abbrev . 59
Add Mode Word Abbrev . 59
Add Scribe Directive . 42
Add Scribe Paragraph Delimiter 42
Add Word to Spelling Dictionary 44
Append to Word Abbrev File 60
Apropos . 13
Argument Digit . 4
Ask about Old Shells . 54
Auto Fill Linefeed . 41
Auto Fill Mode . 41
Auto Fill Return . 41
Auto Fill Space . 42
Auto Save Mode . 36
Auto Spell Mode . 45

B
Back to Indentation . 64
Backup File . 35
Backward Character . 18
Backward Form . 66
Backward Kill Form . 66
Backward Kill Line . 24
Backward Kill Sentence . 40
Backward List . 67
Backward Paragraph . 40
Backward Sentence . 40
Backward Up List . 67
Backward Word . 18
Beginning of Buffer . 19
Beginning of Defun . 67
Beginning of Line . 18
Bind Key . 120
Bottom of Window . 19
Bufed . 56
Bufed Delete . 56
Bufed Delete Confirm . 56
Bufed Expunge . 56
Bufed Goto . 56
Bufed Goto and Quit . 56
Bufed Help . 56
Bufed Quit . 56
Bufed Save File . 56
Bufed Undelete . 56

Buffer Changes . 48
Buffer Not Modified . 33

C
Capitalize Word . 24
Caps Lock Mode . 58
Center Line . 65
Check Buffer Modified . 33
Check Word Spelling . 43
Circulate Buffers . 33
Compare Buffers . 48
Compile Buffer File . 77
Compile Buffer File Confirm 77
Compile Defun . 77
Compile File . 77
Compile Group . 77
Compile Region . 77
Completion Complete Word . 57
Completion Database Filename 57
Completion Mode . 57
Completion Rotate Completions 57
Completion Self Insert . 57
Confirm Eval Input . 82
Confirm Process Input . 55
Confirm Typescript Input . 74
Continue Main Process . 55
Copy File . 116
Correct Buffer Spelling . 44
Correct Last Misspelled Word 46
Count Lines . 30
Count Lines Page . 30
Count Occurrences . 30
Count Words . 30
Create Buffer . 33
Create Folder . 99
Current Compile Server . 77
Current Eval Server . 71
Current Shell . 54

D
Debug Abort . 80
Debug Backtrace . 80
Debug Bottom . 80
Debug Down . 79
Debug Edit Source . 81
Debug Error . 80
Debug Flush Errors . 81
Debug Frame . 80
Debug Go . 80
Debug Help . 80
Debug List Locals . 80
Debug Print . 80
Debug Quit . 80

Function Index 123

Debug Restart . 80
Debug Source . 80
Debug Top . 80
Debug Up . 79
Debug Verbose Print . 80
Debug Verbose Source . 80
Defhvar . 120
Defindent . 69
Define Keyboard Macro . 119
Define Keyboard Macro Key 119
Define Keyboard Macro Key Confirm 119
Define Word Abbrevs . 61
Delete All Word Abbrevs . 61
Delete Blank Lines . 26
Delete Definition Directory Translation 79
Delete Draft and Buffer . 97
Delete File . 116
Delete Folder . 100
Delete Global Word Abbrev . 61
Delete Headers Buffer and

Message Buffers . 101
Delete Horizontal Space . 25
Delete Indentation . 64
Delete Key Binding . 120
Delete Matching Lines . 29
Delete Message . 98
Delete Message and Down Line 99
Delete Message and Show Next 99
Delete Mode Word Abbrev . 61
Delete Next Character . 23
Delete Next Window . 39
Delete Non-Matching Lines 29
Delete Previous Character 23
Delete Previous Character Expanding Tabs . . . 23
Delete Window . 39
Deliver Message . 97
Deliver Message Confirm . 97
Describe and Show Variable 14
Describe Command . 14
Describe Function Call . 78
Describe Key . 14
Describe Library Entry . 62
Describe Mode . 14
Describe Pointer . 14
Describe Pointer Library Entry 62
Describe Symbol . 78
Directory . 116
Dired . 51
Dired Copy File . 53
Dired Copy with Wildcard . 53
Dired Delete File . 52
Dired Delete File and Down Line 52
Dired Delete File with Pattern 52
Dired Directory Expunge Confirm 52
Dired Edit File . 51
Dired Expunge Files . 52
Dired File Expunge Confirm 52
Dired from Buffer Pathname 51

Dired Help . 51
Dired Next File . 52
Dired Previous File . 52
Dired Quit . 52
Dired Rename File . 53
Dired Rename with Wildcard 53
Dired Undelete File . 52
Dired Undelete File and Down Line 52
Dired Undelete File with Pattern 52
Dired Up Directory . 51
Dired Update Buffer . 51
Dired View File . 51
Dired with Pattern . 51
Down Comment Line . 63
Down List . 67
Draft Help . 97

E
Edit Command Definition . 79
Edit Definition . 79
Edit Message Buffer . 98
Edit Word Abbrevs . 61
Editor Compile Buffer File 82
Editor Compile Defun . 81
Editor Compile File . 82
Editor Compile Group . 82
Editor Compile Region . 81
Editor Describe . 81
Editor Describe Function Call 81
Editor Describe Symbol . 81
Editor Evaluate Buffer . 81
Editor Evaluate Defun . 81
Editor Evaluate Expression 82
Editor Evaluate Region . 81
Editor Load File . 81
Editor Load Library Entry . 62
Editor Load Pointer Library Entry 62
Editor Macroexpand Expression 81
Editor Mode . 81
Editor Re-evaluate Defvar 81
Editor Server Name . 72
End Keyboard Macro . 119
End of Buffer . 19
End of Defun . 67
End of Line . 18
Evaluate Buffer . 76
Evaluate Defun . 76
Evaluate Expression . 76
Evaluate Region . 76
Exchange Point and Mark . 21
Exit Hemlock . 15
Exit Lisp Library . 62
Exit Recursive Edit . 16
Expunge Messages . 101
Extended Command . 3
Extract Form . 67
Extract List . 67

Function Index 124

F
Fetch All Headers . 111
Fill Lisp Comment Paragraph 68
Fill Lisp Comment Paragraph Confirm 68
Fill Paragraph . 41
Fill Region . 41
Filter Region . 26
Find File . 34
Flush Compiler Error Information 78
Forward Character . 18
Forward Form . 66
Forward Kill Form . 66
Forward Kill Sentence . 40
Forward List . 67
Forward Message . 96
Forward Paragraph . 40
Forward Search . 27
Forward Sentence . 40
Forward Up List . 67
Forward Word . 18
Fundamental Mode . 5

G
Generic Describe . 14
Generic Pointer Up . 21
Get Register . 30
Go to One Window . 39
Goto Absolute Line . 18
Goto Definition . 79
Goto Headers Buffer . 97
Goto Message Buffer . 97
Goto Page . 29
Group Query Replace . 47
Group Replace . 47
Group Search . 47

H
Headers Delete Message . 99
Headers Help . 92
Headers Refile Message . 100
Headers Undelete Message . 99
Help . 13
Here to Top of Window . 21

I
Incorporate and Read New Mail 92
Incorporate New Mail . 92
Incremental Search . 26
Indent . 64
Indent for Comment . 63
Indent Form . 68
Indent New Comment Line . 63
Indent New Line . 64
Indent Region . 64
Indent Rigidly . 65
Insert () . 66
Insert Buffer . 34
Insert Cut Buffer . 9
Insert File . 35
Insert Kill Buffer . 22
Insert Message Buffer . 98
Insert Message Region . 98
Insert Page Directory . 30
Insert Scribe Directive . 42
Insert Word Abbrevs . 61
Interactive Beginning of Line 75
Interactive History Length 74
Interrupt Buffer Subprocess 55
Inverse Add Global Word Abbrev 59
Inverse Add Mode Word Abbrev 59

J
Jump to Saved Position . 30
Just One Space . 25

K
Keep Message . 94
Keyboard Macro Query . 119
Kill Buffer . 33
Kill Buffer Subprocess . 55
Kill Comment . 63
Kill Interactive Input . 74
Kill Line . 24
Kill Main Process . 55
Kill Next Word . 24
Kill Previous Word . 24
Kill Process Confirm . 55
Kill Region . 23
Kill Register . 31
Kill Slave . 73
Kill Slave and Buffers . 73

Function Index 125

L
Last Keyboard Macro . 119
Line to Center of Window . 39
Line to Top of Window . 39
Lisp Insert) . 69
Lisp Library . 62
Lisp Library Help . 62
Lisp Mode . 66
List All Groups . 106
List Buffers . 33
List Compile Group . 77
List Folders . 99
List Incremental Spelling Insertions 44
List Mail Buffers . 102
List Matching Lines . 28
List Operations . 73
List Possible Completions 57
List Registers . 31
List Scribe Paragraph Delimiters 42
List Word Abbrevs . 60
Load File . 77
Load Library Entry . 62
Load Pathname Defaults . 77
Load Pointer Library Entry 62
Log Change . 49
Log Entry Template . 49
Lowercase Region . 24
Lowercase Word . 24

M
Macroexpand Expression . 76
Make Word Abbrev . 59
Manual Page . 117
Mark Defun . 68
Mark Form . 66
Mark Message . 100
Mark Page . 29
Mark Paragraph . 40
Mark Sentence . 40
Mark to Beginning of Buffer 20
Mark to End of Buffer . 20
Mark Whole Buffer . 20
Merge Buffers . 48
Message Buffer Insertion Prefix 98
Message Headers . 91
Message Help . 95
Message Insertion Column . 98
Message Insertion Prefix . 98
Minimum Interactive Input Length 74
Move Over) . 69

N
Name Keyboard Macro . 120
Negative Argument . 4
Netnews . 107
Netnews Abort Post . 112
Netnews Append to File . 110
Netnews Browse . 107
Netnews Browse Add Group To File 107
Netnews Browse Pointer Add Group to File . . . 107
Netnews Browse Pointer Read Group 107
Netnews Browse Read Group 107
Netnews Deliver Post . 112
Netnews Deliver Post Confirm 112
Netnews Exit . 111
Netnews Exit Confirm . 111
Netnews Forward Message . 112
Netnews Go to Next Group . 111
Netnews Goto Draft Buffer 112
Netnews Goto Headers Buffer 110
Netnews Goto Post Buffer . 112
Netnews Group Punt Messages 111
Netnews Headers File Message 111
Netnews Headers Proportion 109
Netnews Headers Scroll Window Down 110
Netnews Headers Scroll Window Up 110
Netnews Last Header Style 109
Netnews Look at Group . 107
Netnews Message File . 110
Netnews Message File Message 111
Netnews Message Keep Buffer 110
Netnews Message Quit . 110
Netnews Message Scroll Down 110
Netnews Next Article . 110
Netnews Next Line . 109
Netnews Post Message . 112
Netnews Previous Article 110
Netnews Previous Line . 109
Netnews Quit Browse . 107
Netnews Quit Starting Here 111
Netnews Read Style . 109
Netnews Reply to Group . 112
Netnews Reply to Group in Other Window 112
Netnews Reply to Sender . 111
Netnews Reply to Sender in Other Window 112
Netnews Scroll Show Next Message 110
Netnews Select Message Buffer 110
Netnews Show Article . 109
Netnews Show Whole Header 109
New Line . 22
New Window . 38
Next Compiler Error . 78
Next Interactive Input . 74
Next Line . 18
Next Message . 93
Next Page . 29
Next Undeleted Message . 94
Next Window . 38

Function Index 126

O
Open Line . 22
Overwrite Delete Previous Character 58
Overwrite Mode . 58

P
Paren Pause Period . 69
Parse Buffer for Completions 58
Pascal Mode . 65
Pause Hemlock . 15
Pick Headers . 92
Point to Here . 21
Pop and Goto Mark . 20
Pop Mark . 20
Previous Compiler Error . 78
Previous Interactive Input 74
Previous Line . 18
Previous Message . 94
Previous Page . 29
Previous Undeleted Message 94
Previous Window . 38
Print Buffer . 117
Print File . 117
Print Region . 117
Process File Options . 38
Put Register . 30

Q
Query Replace . 27
Quit Buffer Subprocess . 55
Quit Headers . 101
Quote Tab . 65
Quoted Insert . 22

R
Re-evaluate Defvar . 76
Read Completions . 57
Read Spelling Dictionary . 44
Read Word Abbrev File . 60
Reenter Interactive Input 75
Refile Message . 100
Refresh Screen . 39
Region to Cut Buffer . 9
Remail Message . 97
Remove Word from Spelling Dictionary 44
Rename Buffer . 34
Rename File . 116
Replace String . 28
Reply to Message . 96
Reply to Message in Other Window 96
Reply to Message Prefix Action 96
Reverse Incremental Search 26
Reverse Search . 27
Revert File . 35
Revert File Confirm . 35

Room . 81
Rotate Kill Ring . 23

S
Sample Command . 2
Save All Files . 35
Save All Files and Exit . 35
Save All Files Confirm . 35
Save Completions . 57
Save File . 34
Save Incremental Spelling Insertions 44
Save Position . 30
Save Region . 24
Scribe Bracket Table . 43
Scribe Buffer File . 117
Scribe Buffer File Confirm 117
Scribe File . 117
Scribe Insert Bracket . 43
Scribe Mode . 42
Scroll Message . 94
Scroll Message Showing Next 94
Scroll Next Window Down . 39
Scroll Next Window Up . 39
Scroll Window Down . 18
Scroll Window Up . 18
Search Previous Interactive Input 74
Select Background . 72
Select Buffer . 32
Select Eval Buffer . 82
Select Group . 47
Select Previous Buffer . 33
Select Random Typeout Buffer 6
Select Scribe Warnings . 117
Select Slave . 72
Self Insert . 22
Self Insert Caps Lock . 58
Self Overwrite . 58
Send EOF to Process . 55
Send Message . 95
Set Buffer Compile Server . 77
Set Buffer Eval Server . 71
Set Buffer Package . 76
Set Buffer Read-Only . 33
Set Buffer Spelling Dictionary 45
Set Buffer Writable . 33
Set Comment Column . 63
Set Compile Server . 77
Set Current Shell . 55
Set Eval Server . 71
Set Fill Column . 41
Set Fill Prefix . 41
Set Variable . 120
Set/Pop Mark . 20
Shell . 54
Shell Command Line in Buffer 55
Shell Utility . 54
Shell Utility Switches . 54

127

Show Message . 93
Show Variable . 14
Spelling Un-Correct Prompt for Insert 45
Split Window . 38
Stop Buffer Subprocess . 55
Stop Main Process . 55

T
Text Mode . 40
Top Line to Here . 21
Top of Window . 19
Track Buffer Point . 7
Transpose Characters . 25
Transpose Forms . 66
Transpose Lines . 25
Transpose Regions . 25
Transpose Words . 25
Typescript Slave BREAK . 75
Typescript Slave Status . 75
Typescript Slave to Top Level 75

U
Un-Kill . 23
Undelete Message . 99
Undo . 15
Undo Last Spelling Correction 45
Unexpand Last Word . 60
Universal Argument . 4
Universal Argument Default 4

Unix Filter Region . 118
Unwedge Interactive Input Confirm 74
Up Comment Line . 63
Uppercase Region . 24
Uppercase Word . 24

V
Verbose Directory . 116
View Edit File . 54
View File . 53
View Help . 54
View Page Directory . 30
View Quit . 54
View Return . 54
View Scroll Deleting Buffer 54
View Scroll Down . 54
Virtual Buffer Deletion . 56
Visit File . 35

W
What Lossage . 14
Where Is . 14
Word Abbrev Apropos . 60
Word Abbrev Prefix Mark . 60
Write File . 35
Write Region . 35
Write Word Abbrev File . 60

128

Variable Index

A
Abbrev Pathname Defaults . 60
Active Region Highlighting Font 20
Active Regions Enabled . 19
Add Newline at EOF on Writing File 35
Ask About Old Servers . 72
Authenticate Incorporation 93
Authentication User Name . 93
Auto Check Word Spelling . 45
Auto Fill Space Indent . 42
Auto Save Checkpoint Frequency 36
Auto Save Cleanup Checkpoints 36
Auto Save Filename Pattern 36
Auto Save Key Count Threshold 36
Auto Save Pathname Hook . 36

B
Beep Border Width . 9
Bell Style . 9

C
Case Replace . 28
Character Deletion Threshold 23
Check Word Spelling Beep . 45
Close Paren Character . 43
Comment Begin . 64
Comment Column . 64
Comment End . 64
Comment Start . 64
Completion Bucket Size . 57
Confirm Slave Creation . 72
Correct Unique Spelling Immediately 45
Cursor Bitmap File . 9

D
Default Font . 9
Default Initial Window Height 9
Default Initial Window Width 9
Default Initial Window X . 9
Default Initial Window Y . 9
Default User Spelling Dictionary 45
Default Window Height . 9
Default Window Width . 9
Defun Parse Goal . 70
Dired Copy File Confirm . 53
Dired Rename File Confirm . 53

E
Editor Definition Info . 79
Escape Character . 43
Expunge Messages Confirm 100

F
Fill Column . 41
Fill Prefix . 41

G
Group Find File . 48
Group Save File Confirm . 48

H
Highlight Active Region . 20
Highlight Open Parens . 69

I
Ignore File Types . 12
Incorporate New Mail Hook . 92
Indent Defanything . 69
Indent Function . 65
Indent with Tabs . 65
Input Wait Alarm . 75

K
Keep Backup Files . 36
Key Echo Delay . 3

L
Last Resort Pathname Defaults 37
Last Resort Pathname Defaults Function 37

M
Maximum Lines Parsed . 70
Maximum Modeline Pathname Length 7
MH Lisp Expression . 92
MH Scan Line Form . 91
MH Utility Pathname . 90
Minimum Lines Parsed . 70

129

N
Netnews Batch Count . 108
Netnews Before Date Field Pad 108
Netnews Database File . 106
Netnews Date Field Length 108
Netnews Fetch All Headers 108
Netnews Field Padding . 108
Netnews From Field Length 108
Netnews Group File . 106
Netnews Line Field Length 108
Netnews Message Header Fields 109
Netnews New Group Style . 108
Netnews NNTP Server . 106
Netnews NNTP Timeout Period 106
Netnews Start Over Threshold 108
Netnews Subject Field Length 108
New Mail Folder . 92

O
Open Paren Character . 43
Open Paren Highlighting Font 69

P
Paragraph Delimiter Function 41
Parse End Function . 70
Parse Start Function . 70
Pathname Defaults . 37
Print Utility . 117
Print Utility Switches . 117

R
Region Query Size . 15
Remote Compile File . 78
Reverse Video . 9

S
Sample Variable . 2
Scribe Utility . 117
Scribe Utility Switches . 117
Scroll Overlap . 19
Scroll Redraw Ratio . 11
Set Window Autoraise . 9
Slave GC Alarm . 75
Slave Utility . 73
Slave Utility Switches . 73
Source Compare Default Destination 48
Source Compare Ignore Case 49
Source Compare Ignore Extra Newlines 49
Source Compare Ignore Indentation 49
Source Compare Number of Lines 49
Spaces per Tab . 65
Spell Ignore Uppercase . 44
Store Password . 93
String Search Ignore Case . 26

T
Temporary Draft Folder . 100
Thumb Bar Meter . 9

U
Unseen Headers Message Spec 92

V
Virtual Message Deletion . 98

130

Concept Index

A
aborting . 15
active regions . 19
ASCII keyboard translation . 10

B
background buffers . 71
backing up mail directories . 88
beeping . 16
bindings,

key . 3
bit-prefix key-events . 3, 10
bits,

key-event . 1
buffer,

comparison . 48
display . 6
merging . 48

C
case modification . 24
case sensitivity . 26, 28, 44, 49
change log . 49
character,

deletion . 22
insertion . 22
motion . 18
transposition . 25

commands . 2
basic . 18
extended . 3
killing . 24
modification . 22
transposition . 24

comment manipulation . 63
compilation . 76
components . 87
constraints for mail interface 85
convenience commands for mail interface 97
current eval server . 71
cursor . 1
customization . 119
cutting . 8, 23

D
defaulting,

filename . 37
defun manipulation . 67
deleting messages . 98
deletion,

character . 22
directory editing . 51
display,

buffer . 6
display conventions . 5
documentation,

hemlock . 13
lisp . 78

documents,
editing . 40

draft buffer commands . 97

E
echo area . 11
edit history . 49
entering hemlock . 14
ephemerally active regions . 19
error handling . 82
error recovery . 15
errors,

internal . 16
user . 16

eval server operations . 73
eval servers . 71
evaluation . 76
exiting hemlock . 15

F
file groups] . 47
file options . 37
filename defaulting . 37
files . 34
filling . 41
folder operations . 99
form manipulation . 66
formatting . 41
forwarding components . 87

G
group,

compilation . 77

Concept Index 131

H
hemlock variables . 120
history,

echo area . 12
typescript . 74

I
incremental redisplay . 10
indentation . 64

comment . 63
lisp . 68
manipulation . 25
pascal . 65

init files . 121
insertion,

character . 22
invocation,

command . 2

K
key bindings . 3, 120
key-event,

prefix . 10
key-events,

notation . 1
keyboard macros . 119
keyboard use under X . 8
kill ring . 23

manipulation . 23
killing . 23

form . 66
sentence . 40

L
large region . 15
line,

killing . 24
motion . 18
transposition . 25

lisp,
editing . 66
interaction with . 71

lisp mode . 66
list manipulation . 67

M
mail commands . 90
mail profile . 85
mail variables . 90
major mode . 5
mark stack . 20
marking messages . 100
marks . 19
merging,

filename . 37
message buffer commands . 97
MH interface . 84
MH profile . 85
minor mode . 5
mode comment . 37
modeline . 7
modes . 4, 37

auto fill . 41
eval . 82
lisp . 66
pascal . 65
scribe . 42

modifiers,
key-event . 1

motion . 18
defun . 67
form . 66
indentation . 64
list . 67
paragraph . 40
sentence . 40

mouse . 21

O
online help . 13
operations,

eval server . 73

P
package . 37, 76
page commands . 29
paragraph,

filling . 41
motion . 40

paragraph commands . 40
parenthesis matchingAnother very important

facility provided by . 69
pasting . 8, 23
pathnames . 37
point . 1
pop-up windows . 5
prefix argument . 4
prefix key-events . 10
processes . 54
prompting . 11

Concept Index 132

R
random typeout . 5
reading messages . 93
reading new mail . 92
recentering windows . 6
recursive edits . 16
refiling messages . 100
region . 19

case modification . 24
filling . 41
killing . 23

registers . 30
replacing . 26

group . 47
reply components . 87

S
save-all-buffers,

function . 17
scrolling . 18, 39
searching . 26

group . 47
selection . 19
sending messages . 95
sentence commands . 40
setting up the mail interface. 85
shells . 54
slave buffers . 71
slaves . 71
slow terminals . 10
source comparison . 48
speed,

terminal . 10
spelling correction . 43
status line . 7
styles of mail interface usage 102

T
terminal speed . 10
terminals,

use with . 10
translation of keys under X . 8
transposition . 24
type hooks . 37
typescripts . 73

U
undoing . 15

V
variables,

hemlock . 2, 120
virtual message deletion . 84

W
whitespace,

manipulation . 25
window,

motion . 19, 21
window management . 8
window placement . 9
windows . 38

recentering . 6
word,

case modification . 24
killing . 24
motion . 18
transposition . 25

word abbreviation . 58

X
X windows,,

use with . 7

	Introduction
	The Point and The Cursor
	Notation
	Key-events
	Commands
	Hemlock Variables

	Invoking Commands
	Key Bindings
	Extended Commands

	The Prefix Argument
	Modes
	Display Conventions
	Pop-Up Windows
	Buffer Display
	Recentering Windows
	Modelines

	Use with X Windows
	Window Groups
	Event Translation
	Cut Buffer Commands
	Redisplay and Screen Management

	Use With Terminals
	Terminal Initialization
	Terminal Input
	Terminal Redisplay

	The Echo Area
	Online Help
	Entering and Exiting
	Helpful Information
	Recursive Edits
	User Errors
	Internal Errors

	Basic Commands
	Motion Commands
	The Mark and The Region
	The Mark Stack
	Using The Mouse

	Modification Commands
	Inserting Characters
	Deleting Characters
	Killing and Deleting
	Kill Ring Manipulation
	Killing Commands
	Case Modification Commands
	Transposition Commands
	Whitespace Manipulation

	Filtering
	Searching and Replacing
	Page Commands
	Counting Commands
	Registers

	Files, Buffers, and Windows
	Introduction
	Buffers
	Files
	Auto Save Mode
	Filename Defaulting and Merging
	Type Hooks and File Options

	Windows

	Editing Documents
	Sentence Commands
	Paragraph Commands
	Filling
	Scribe Mode
	Spelling Correction
	Auto Spell Mode

	Managing Large Systems
	File Groups
	Source Comparison
	Change Logs

	Special Modes
	Dired Mode
	Inspecting Directories
	Deleting Files
	Undeleting Files
	Expunging and Quitting
	Copying Files
	Renaming Files

	View Mode
	Process Mode
	Bufed Mode
	Completion
	CAPS-LOCK Mode
	Overwrite Mode
	Word Abbreviation
	Basic Commands
	Word Abbrev Files
	Listing Word Abbrevs
	Editing Word Abbrevs
	Deleting Word Abbrevs

	Lisp Library

	Editing Programs
	Comment Manipulation
	Indentation
	Language Modes

	Editing Lisp
	Lisp Mode
	Form Manipulation
	List Manipulation
	Defun Manipulation
	Indentation
	Parenthesis Matching
	Parsing Lisp

	Interacting With Lisp
	Eval Servers
	The Current Eval Server
	Slaves
	Slave Creation and Destruction
	Eval Server Operations

	Typescripts
	The Current Package
	Compiling and Evaluating Lisp Code
	Compiling Files
	Querying the Environment
	Editing Definitions
	Debugging
	Changing Frames
	Getting out of the Debugger
	Getting Information
	Editing Sources
	Miscellaneous

	Manipulating the Editor Process
	Editor Mode
	Eval Mode
	Error Handling

	Command Line Switches

	The Mail Interface
	Introduction to Mail in Hemlock
	Constraints on MH to use Hemlock's Interface
	Setting up MH
	Profile Components and Customized Files
	Profile Components
	Components Files

	Backing up the Mail Directory
	Andrew File System
	Copy into AFS:
	Mail Directory Lives in AFS:

	Sup to a Mainframe

	Introduction to Commands and Variables
	Scanning and Picking Messages
	Reading New Mail
	Reading Messages
	Sending Messages
	Convenience Commands for Message and Draft Buffers
	Deleting Messages
	Folder Operations
	Refiling Messages
	Marking Messages
	Terminating Headers Buffers
	Miscellaneous Commands
	Styles of Usage
	Unseen Headers Message Spec
	Temporary Draft Folder
	Reply to Message Prefix Action

	Wallchart

	The Hemlock Netnews Interface
	Introduction to Netnews in Hemlock
	Setting Up Netnews
	News-Browse Mode

	Starting Netnews
	Reading Messages
	Replying to Messages
	Posting Messages
	Wallchart

	System Interface
	File Utility Commands
	Printing
	Scribe
	Miscellaneous

	Simple Customization
	Keyboard Macros
	Binding Keys
	Hemlock Variables
	Init Files

	Function Index
	Variable Index
	Concept Index

