
CMUCL Motif Toolkit

April 9, 2003

1 Naming conventions

In general, names in the Lisp Motif interface are derived directly from the C original. The following
rules apply:

1. Drop Xt” and Xm (also XmN, XmC, etc.) prefixes

2. Separate words by dashes (-) rather than capitalization

3. Resource names and enumeration values are given as keywords

4. Replace underscores () with dashes (-)

Examples:

XtCreateWidget =⇒ create-widget
XmNlabelString =⇒ :label-string
XmVERTICAL =⇒ :vertical

Some exceptions:
Compound string functions (XmString. . .) are prefixed by compound-string- rather than string-
in Lisp.

Functions or resources, with the exception of the compound-string-xxx functions, which re-
quire compound string arguments, may be given Lisp SIMPLE-STRINGs instead.

The arguments to functions are typically the same as the C Motif equivalents. Some exceptions
are:

• Widget creation functions have a &rest arg for resource values.

• Functions which take a string table/length pair in C only take a list of strings in Lisp.

• Registering functions such as ADD-CALLBACK use a &rest arg for registering an arbitrary
number of client-data items.

2 Starting things up

The Motif toolkit interface is divided into two parts. First, there is a server process written in
C which provides an RPC interface to Motif functions. The other half is a Lisp package which
connects to the server and makes requests on the user’s behalf. The Motif interface is exported
from the TOOLKIT (nickname XT) package.

2.1 Variables controlling connections

DEFAULT-SERVER-HOST A string naming the machine where the Motif server is to be found.
The default is NIL, which causes a connection to be made using a Unix domain socket on the
local machine. Any other name must be a valid machine name, and the client will connect using
Internet domain sockets.

1

DEFAULT-DISPLAY Determines the display on which to open windows. The default value of
NIL instructs the system to consult the DISPLAY environment variable. Any other value must be
a string naming a valid X display.

DEFAULT-TIMEOUT-INTERVAL An integer specifying how many seconds the Lisp process will
wait for input before assuming that the connection to the server has timed out.

2.2 Handling Connections

OPEN-MOTIF-CONNECTION (hostname xdisplay-name app-name app-class) Opens a connec-
tion to a server on the named host and opens a display connection to the named X display. The
app-name and app-class are for defining the application name and class for use in resource spec-
ifications. An optional process-id argument can be passed if a local server process has already
been created. This returns a MOTIF-CONNECTION object.

CLOSE-MOTIF-CONNECTION (connection) This closes a toolkit connection which was created by
OPEN-MOTIF-CONNECTION.

MOTIF-CONNECTION Bound in contexts such as callback handlers to the currently active toolkit
connection.

X-DISPLAY Bound in contexts such as callback handlers to the currently active CLX display.

WITH-MOTIF-CONNECTION ((connection) &body forms) This macro establishes the necessary
context for invoking toolkit functions outside of callback/event handlers.

WITH-CLX-REQUESTS (&body forms) Macro that ensures that all CLX requests made within its
body will be flushed to the X server before proceeding so that Motif functions may use the results.

RUN-MOTIF-APPLICATION (init-function) This is the standard CLM entry point for creating
a Motif application. The init-function argument will be called to create and realize the interface.
It returns the created MOTIF-CONNECTION object. Available keyword arguments are:

:init-args list of arguments to pass to init-function
:application-class application class (default "Lisp")
:application-name application name (default "lisp")
:server-host name of Motif server to connect to
:display name of X display to connect to

QUIT-APPLICATION () This is the standard function for closing down a Motif application. You
can call it within your callbacks to terminate the application.

3 The Server

The C server is run by the motifd program. This will create both Inet and Unix sockets for the
Lisp client to connect to. By default, the Inet and Unix sockets will be specific to the user.

When a Lisp client connects to the server, it forks a copy of itself. Thus each Lisp application
has an exclusive connection to a single C server process. To terminate the server, just Ĉ it.
Switches to change behavior:

2

-global Sockets created for use by everyone rather than being user-specific.
-local No Inet socket is created and the Unix socket is process-specific
-noinet Instructs the server not to create an Inet socket.
-nounix Instructs the server not to create a Unix socket.
-nofork Will keep the server from forking when connections are made. This is use-

ful when debugging the server or when you want the server to die when the
application terminates.

-trace Will spit out lots of stuff about what the server is doing. This is only for
debugging purposes.

Typically, users do not need to be concerned with server switches since, by default, servers are
created automatically by your Lisp process. However, if you wish to share servers, or use servers
across the network, you will need to run the server manually.

4 Widget creation

CREATE-APPLICATION-SHELL (&rest resources) Creates the applicationShell widget for a
new Motif application.

CREATE-WIDGET, CREATE-MANAGED-WIDGET (name class parent &rest resources) These cre-
ate new widgets. CREATE-WIDGET does not automatically manage the created widget, while
CREATE-MANAGED-WIDGET does.

CREATE-<widget class> (parent name &rest resources) Convenience function which creates
a new widget of class <widget class>. For instance, CREATE-FORM will create a new XmForm wid-
get.

CONVENIENCE-AUTO-MANAGE Controls whether convenience functions automatically manage
the widgets they create. The default is NIL.

5 Callbacks

Callbacks are registered with the ADD-CALLBACK function. Unlike Motif in C, an arbitrary number
of client-data items can be registered with the callback. Callback functions should be defined as:

(defun callback-handler (widget call-data \&rest client-data) ...)

The passed widget is that in which the callback has occurred, and the call-data is a structure
which provides more detailed information on the callback. Client-data is some number of argu-
ments which have been registered with the callback handler. The slots of the call-data structure
can be derived from the C structure name using the standard name conversion rules. For example,
the call-data structure for button presses has the following slot (aside from the standard ones):
click-count.

To access the X event which generated the callback, use the following:

(defun handler (widget call-data \&rest client-data)
(with-callback-event (event call-data)
;; Use event structure here

))

Since callback procedures are processed synchronously, the Motif server will remain blocked to
event handling until the callback finishes. This can be potentially troublesome, but there are two
ways of dealing with this problem. The first alternative is the function UPDATE-DISPLAY. Invoking
this function during your callback function will force the server to process any pending redraw

3

events before continuing. The other (slightly more general) method is to register deferred actions
with the callback handling mechanism. Deferred actions will be invoked after the server is released
to process other events and the callback is officially terminated. Deferred actions are not invoked
if the current application was destroyed as a result of the callback, since any requests to the server
would refer to an application context which was no longer valid. The syntax for their usage is:

(with-callback-deferred-actions <forms>)

You may register only one set of deferred actions within the body of any particular callback
procedure, as well as within event handlers and action procedures. Registering a second (or more)
set of deferred actions will overwrite all previous ones.

When using deferred action procedures, care must be taken to avoid referencing invalid data.
Some information available within callbacks is only valid within the body of that callback and
is discarded after the callback terminates. For instance, events can only be retrieved from the
call-data structure within the callback procedure. Thus the code

(with-callback-deferred-actions
(with-callback-event (event call-data)

(event-type event)))

is incorrect since the event will be fetched after the callback is terminated, at which point the
event information will be unavailable. However, the code

(with-callback-event (event call-data)
(with-callback-deferred-actions

(event-type event)))

is perfectly legitimate. The event will be fetched during the callback and will be closed over
in the deferred action procedure.

6 Action procedures

Action procedures can be registered in translation tables as in the following example:

<Key> q: Lisp(SOME-PACKAGE:MY-FUNCTION)\n

The generating X event can be accessed within the action handler using:

(with-action-event (event call-data)
... use event here ...

)

7 Event handlers

X events are also represented as structured objects with slot names which are directly translated
from the C equivalent. The accessor functions are named by <event name>-<slot name>. Some
examples:

(event-window event) This applies to all events
(event-type event) So does this

(button-event-x event) Some button event
(button-event-button event) accessors

At the moment, XClientMessage and XKeyMap events are not supported (they will be in the
not too distant future).

Provided conveniences
Since Motif requires the use of font lists for building non-trivial compound strings, there are

some Lisp functions to ease the pain of building them:

4

BUILD-SIMPLE-FONT-LIST (name font-spec) Returns a font list of with the given name asso-
ciated with the given font. For example,

(build-simple-font-list "MyFont" "8x13")

BUILD-FONT-LIST (flist-spec) This allows for the construction of font lists with more than
one font. An example:

(build-font-list ‘(("EntryFont" ,entry-font-name)
("HeaderFont" ,header-font-name)
("ItalicFont" ,italic-font-name)))

There are certain callbacks which are of general use, and standard ones are provided for the
programmer’s convenience. For all callbacks except QUIT-APPLICATION-CALLBACK, you register
some number of widgets with ADD-CALLBACK. These will be the widgets acted upon by the callback:

QUIT-APPLICATION-CALLBACK () Callback to terminate the current application.

DESTROY-CALLBACK Destroys all the widgets passed to it.

MANAGE-CALLABCK Manages all the widgets passed to it.

UNMANAGE-CALLBACK Unmanages all the widgets passed to it.

POPUP-CALLBACK Calls popup on all widgets passed to it.

POPDOWN-CALLBACK Calls popdown on all widgets passed to it.

8 Some random notes

• When using functions such as REMOVE-CALLBACK, the client-data passed must be EQUAL to
the client-data passed to ADD-CALLBACK.

• When using REMOVE-CALLBACK, etc., the function may be supplied as either ’FUNCTION or
#’FUNCTION. However, they are considered different so use the same one when adding and
removing callbacks.

• You cannot directly access the XmNitems resources for List widgets and relatives. Instead,
use (SET-ITEMS <widget>) and (GET-ITEMS <widget>).

9 Things that are missing

• Real documentation

• Support for XClientMessage and XKeyMap events

• Callback return values (e.g. XmTextCallback’s)

• Ability to send strings longer than 4096 bytes.

All these things should start appearing in the next few weeks1

1NOTE: This document was written at CMU many years ago. The “formatter” does not make any guarantees
about the validity of this claim.

5

10 A brief example

(defun my-callback (widget call-data quit)
(format t "Got callback on ~A~%" widget)
(format t "Callback reason was ~A~%" (any-callback-reason call-data))
(format t "Quit button is ~A~%" quit))

(defun test-init ()
(let* ((shell (create-application-shell))
(rc (create-row-column shell "rowColumn"))
(quit (create-push-button-gadget rc "quitButton"
:label-string "Quit"))
(button (create-push-button-gadget rc "button"

:highlight-on-enter t
:shadow-thickness 0
:label-string "This is a button")))

(add-callback quit :activate-callback #’quit-application-callback)
(add-callback button :activate-callback ’my-callback quit)

(manage-child rc)
(manage-children quit button)
(realize-widget shell)))

(defun test ()
(run-motif-application ’test-init))

6

